
RELIABILITY AND
AVAILABILITY OF

CLOUD COMPUTING

 IEEE Press
 445 Hoes Lane

 Piscataway, NJ 08854

IEEE Press Editorial Board 2012
 John Anderson, Editor in Chief

 Ramesh Abhari Bernhard M. Haemmerli Saeid Nahavandi
 George W. Arnold David Jacobson Tariq Samad
 Flavio Canavero Mary Lanzerotti George Zobrist
 Dmitry Goldgof Om P. Malik

 Kenneth Moore, Director of IEEE Book and Information Services (BIS)

Technical Reviewers

 Xuemei Zhang
Principal Member of Technical Staff

Network Design and Performance Analysis
AT & T Labs

 Rocky Heckman, CISSP
Architect Advisor

Microsoft

RELIABILITY AND
AVAILABILITY OF

CLOUD COMPUTING

Eric Bauer
Randee Adams

A JOHN WILEY & SONS, INC., PUBLICATION

IEEE PRESS

cover image: © iStockphoto
cover design: Michael Rutkowski

ITIL® is a Registered Trademark of the Cabinet Offi ce in the United Kingdom and other countries.

Copyright © 2012 by the Institute of Electrical and Electronics Engineers. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifi cally disclaim any implied warranties of
merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profi t or any other commercial damages, including but not limited
to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:
Bauer, Eric.
 Reliability and availability of cloud computing / Eric Bauer, Randee Adams.
 p. cm.
 ISBN 978-1-118-17701-3 (hardback)
1. Cloud computing. 2. Computer software–Reliabillity. 3. Computer software–Quality
control. 4. Computer security. I. Adams, Randee. II. Title.
 QA76.585.B394 2012
 004.6782–dc23
 2011052839

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

 To our families and friends
for their continued encouragement and support.

vii

CONTENTS

Figures xvii

Tables xxi

Equations xxiii

Introduction xxv

I BASICS 1

1 CLOUD COMPUTING 3
1.1 Essential Cloud Characteristics 4

1.1.1 On-Demand Self-Service 4
1.1.2 Broad Network Access 4
1.1.3 Resource Pooling 5
1.1.4 Rapid Elasticity 5
1.1.5 Measured Service 6

1.2 Common Cloud Characteristics 6

1.3 But What, Exactly, Is Cloud Computing? 7

1.3.1 What Is a Data Center? 8
1.3.2 How Does Cloud Computing Differ from Traditional

Data Centers? 9

1.4 Service Models 9

1.5 Cloud Deployment Models 11

1.6 Roles in Cloud Computing 12

1.7 Benefi ts of Cloud Computing 14

1.8 Risks of Cloud Computing 15

viii CONTENTS

 2 VIRTUALIZATION 16
2.1 Background 16

2.2 What Is Virtualization? 17

2.2.1 Types of Hypervisors 18
2.2.2 Virtualization and Emulation 19

2.3 Server Virtualization 19

2.3.1 Full Virtualization 20
2.3.2 Paravirtualization 21
2.3.3 OS Virtualization 22
2.3.4 Discussion 22

2.4 VM Lifecycle 23

2.4.1 VM Snapshot 26
2.4.2 Cloning VMs 26
2.4.3 High Availability Mechanisms 28

2.5 Reliability and Availability Risks of Virtualization 28

 3 SERVICE RELIABILITY AND SERVICE AVAILABILITY 29
3.1 Errors and Failures 30

3.2 Eight-Ingredient Framework 31

3.3 Service Availability 34

3.3.1 Service Availability Metric 35
3.3.2 MTBF and MTTR 36
3.3.3 Service and Network Element Impact Outages 37
3.3.4 Partial Outages 38
3.3.5 Availability Ratings 40
3.3.6 Outage Attributability 41
3.3.7 Planned or Scheduled Downtime 42

3.4 Service Reliability 43

3.4.1 Service Reliability Metrics 44
3.4.2 Defective Transactions 45

3.5 Service Latency 46

3.6 Redundancy and High Availability 50

3.6.1 Redundancy 51
3.6.2 High Availability 53

3.7 High Availability and Disaster Recovery 56

3.8 Streaming Services 58

3.8.1 Control and Data Planes 58
3.8.2 Service Quality Metrics 59
3.8.3 Isochronal Data 60
3.8.4 Latency Expectations 60
3.8.5 Streaming Quality Impairments 61

3.9 Reliability and Availability Risks of Cloud Computing 62

CONTENTS ix

II ANALYSIS 63

 4 ANALYZING CLOUD RELIABILITY AND AVAILABILITY 65
4.1 Expectations for Service Reliability and

Availability 65

4.2 Risks of Essential Cloud Characteristics 66

4.2.1 On-Demand Self-Service 66
4.2.2 Broad Network Access 67
4.2.3 Resource Pooling 67
4.2.4 Rapid Elasticity 67
4.2.5 Measured Service 69

4.3 Impacts of Common Cloud Characteristics 70

4.3.1 Virtualization 70
4.3.2 Geographic Distribution 70
4.3.3 Resilient Computing 71
4.3.4 Advanced Security 71
4.3.5 Massive Scale 71
4.3.6 Homogeneity 71

4.4 Risks of Service Models 72

4.4.1 Traditional Accountability 72
4.4.2 Cloud-Based Application Accountability 73

4.5 IT Service Management and Availability Risks 74

4.5.1 ITIL Overview 74
4.5.2 Service Strategy 75
4.5.3 Service Design 76
4.5.4 Service Transition 77
4.5.5 Service Operation 77
4.5.6 Continual Service Improvement 78
4.5.7 IT Service Management Summary 79
4.5.8 Risks of Service Orchestration 79
4.5.9 IT Service Management Risks 80

4.6 Outage Risks by Process Area 80

4.6.1 Validating Outage Attributability 82

4.7 Failure Detection Considerations 83

4.7.1 Hardware Failures 83
4.7.2 Programming Errors 85
4.7.3 Data Inconsistency and Errors 85
4.7.4 Redundancy Errors 86
4.7.5 System Power Failures 86
4.7.6 Network Errors 86
4.7.7 Application Protocol Errors 86

4.8 Risks of Deployment Models 87

4.9 Expectations of IaaS Data Centers 87

x CONTENTS

 5 RELIABILITY ANALYSIS OF VIRTUALIZATION 90
5.1 Reliability Analysis Techniques 90

5.1.1 Reliability Block Diagrams 90
5.1.2 Single Point of Failure Analysis 92
5.1.3 Failure Mode Effects Analysis 92

5.2 Reliability Analysis of Virtualization Techniques 95

5.2.1 Analysis of Full Virtualization 95
5.2.2 Analysis of OS Virtualization 95
5.2.3 Analysis of Paravirtualization 96
5.2.4 Analysis of VM Coresidency 97
5.2.5 Discussion 99

5.3 Software Failure Rate Analysis 100

5.3.1 Virtualization and Software Failure Rate 100
5.3.2 Hypervisor Failure Rate 101
5.3.3 Miscellaneous Software Risks of Virtualization

and Cloud 101

5.4 Recovery Models 101

5.4.1 Traditional Recovery Options 101
5.4.2 Virtualized Recovery Options 102
5.4.3 Discussion 107

5.5 Application Architecture Strategies 108

5.5.1 On-Demand Single-User Model 108
5.5.2 Single-User Daemon Model 109
5.5.3 Multiuser Server Model 109
5.5.4 Consolidated Server Model 109

5.6 Availability Modeling of Virtualized Recovery Options 110

5.6.1 Availability of Virtualized Simplex Architecture 111
5.6.2 Availability of Virtualized Redundant Architecture 111
5.6.3 Critical Failure Rate 112
5.6.4 Failure Coverage 113
5.6.5 Failure Detection Latency 113
5.6.6 Switchover Latency 113
5.6.7 Switchover Success Probability 114
5.6.8 Modeling and “Fast Failure” 114
5.6.9 Comparison of Native and Virtualized Deployments 115

 6 HARDWARE RELIABILITY, VIRTUALIZATION,
AND SERVICE AVAILABILITY 116
6.1 Hardware Downtime Expectations 116

6.2 Hardware Failures 117

6.3 Hardware Failure Rate 119

CONTENTS xi

6.4 Hardware Failure Detection 121

6.5 Hardware Failure Containment 122

6.6 Hardware Failure Mitigation 122

6.7 Mitigating Hardware Failures via Virtualization 124

6.7.1 Virtual CPU 124
6.7.2 Virtual Memory 125
6.7.3 Virtual Storage 126

6.8 Virtualized Networks 127

6.8.1 Virtual Network Interface Cards 127
6.8.2 Virtual Local Area Networks 128
6.8.3 Virtual IP Addresses 129
6.8.4 Virtual Private Networks 129

6.9 MTTR of Virtualized Hardware 129

6.10 Discussion 131

 7 CAPACITY AND ELASTICITY 132
7.1 System Load Basics 132

7.1.1 Extraordinary Event Considerations 134
7.1.2 Slashdot Effect 134

7.2 Overload, Service Reliability, and Service Availability 135

7.3 Traditional Capacity Planning 136

7.4 Cloud and Capacity 137

7.4.1 Nominal Cloud Capacity Model 138
7.4.2 Elasticity Expectations 141

7.5 Managing Online Capacity 144

7.5.1 Capacity Planning Assumptions of Cloud
Computing 145

7.6 Capacity-Related Service Risks 147

7.6.1 Elasticity and Elasticity Failure 147
7.6.2 Partial Capacity Failure 149
7.6.3 Service Latency Risk 150
7.6.4 Capacity Impairments and Service Reliability 152

7.7 Capacity Management Risks 153

7.7.1 Brittle Application Architecture 154
7.7.2 Faulty or Inadequate Monitoring Data 155
7.7.3 Faulty Capacity Decisions 155
7.7.4 Unreliable Capacity Growth 155
7.7.5 Unreliable Capacity Degrowth 156
7.7.6 Inadequate Slew Rate 156
7.7.7 Tardy Capacity Management Decisions 156
7.7.8 Resource Stock Out Not Covered 157

xii CONTENTS

7.7.9 Cloud Burst Fails 157
7.7.10 Policy Constraints 157

7.8 Security and Service Availability 157

7.8.1 Security Risk to Service Availability 157
7.8.2 Denial of Service Attacks 159
7.8.3 Defending against DoS Attacks 160
7.8.4 Quantifying Service Availability Impact

of Security Attacks 161
7.8.5 Recommendations 162

7.9 Architecting for Elastic Growth and Degrowth 162

 8 SERVICE ORCHESTRATION ANALYSIS 164
8.1 Service Orchestration Defi nition 164

8.2 Policy-Based Management 166

8.2.1 The Role of SLRs 167
8.2.2 Service Reliability and Availability

Measurements 168

8.3 Cloud Management 168

8.3.1 Role of Rapid Elasticity in Cloud Management 169
8.3.2 Role of Cloud Bursting in Cloud Management 169

8.4 Service Orchestration’s Role in Risk Mitigation 169

8.4.1 Latency 170
8.4.2 Reliability 170
8.4.3 Regulatory 171
8.4.4 Security 171

8.5 Summary 172

 9 GEOGRAPHIC DISTRIBUTION, GEOREDUNDANCY,
AND DISASTER RECOVERY 174
9.1 Geographic Distribution versus Georedundancy 175

9.2 Traditional Disaster Recovery 175

9.3 Virtualization and Disaster Recovery 177

9.4 Cloud Computing and Disaster Recovery 178

9.5 Georedundancy Recovery Models 180

9.6 Cloud and Traditional Collateral Benefi ts
of Georedundancy 180

9.6.1 Reduced Planned Downtime 180
9.6.2 Mitigate Catastrophic Network Element Failures 181
9.6.3 Mitigate Extended Uncovered and Duplex

Failure Outages 181

9.7 Discussion 182

CONTENTS xiii

III RECOMMENDATIONS 183

10 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY 185
10.1 Application Confi guration Scenarios 185

10.2 Application Deployment Scenario 187

10.3 System Downtime Budgets 188

10.3.1 Traditional System Downtime Budget 189
10.3.2 Virtualized Application Downtime Budget 189
10.3.3 IaaS Hardware Downtime Expectations 191
10.3.4 Cloud-Based Application Downtime Budget 193
10.3.5 Summary 195

10.4 End-to-End Solutions Considerations 197

10.4.1 What is an End-to-End Solution? 197
10.4.2 Consumer-Specifi c Architectures 198
10.4.3 Data Center Redundancy 199

10.5 Attributability for Service Impairments 201

10.6 Solution Service Measurement 204

10.6.1 Service Availability Measurement Points 204

10.7 Managing Reliability and Service of Cloud
Computing 207

11 RECOMMENDATIONS FOR ARCHITECTING
A RELIABLE SYSTEM 209
11.1 Architecting for Virtualization and Cloud 209

11.1.1 Mapping Software into VMs 210
11.1.2 Service Load Distribution 210
11.1.3 Data Management 211
11.1.4 Software Redundancy and High Availability

Mechanisms 212
11.1.5 Rapid Elasticity 214
11.1.6 Overload Control 214
11.1.7 Coresidency 215
11.1.8 Multitenancy 215
11.1.9 Isochronal Applications 216

11.2 Disaster Recovery 216

11.3 IT Service Management Considerations 217

11.3.1 Software Upgrade and Patch 217
11.3.2 Service Transition Activity Effect

Analysis 218
11.3.3 Mitigating Service Transition Activity

Effects via VM Migration 219
11.3.4 Testing Service Transition Activities 221

xiv CONTENTS

11.3.5 Minimizing Procedural Errors 221
11.3.6 Service Orchestration Considerations 223

11.4 Many Distributed Clouds versus Fewer Huge Clouds 224

11.5 Minimizing Hardware-Attributed Downtime 225

11.5.1 Hardware Downtime in Traditional High
Availability Confi gurations 226

11.6 Architectural Optimizations 231

11.6.1 Reliability and Availability Criteria 232
11.6.2 Optimizing Accessibility 233
11.6.3 Optimizing High Availability, Retainability, Reliability,

and Quality 235
11.6.4 Optimizing Disaster Recovery 235
11.6.5 Operational Considerations 236
11.6.6 Case Study 236
11.6.7 Theoretically Optimal Application Architecture 241

12 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS 244
12.1 Design for Reliability 244

12.2 Tailoring DfR for Virtualized Applications 246

12.2.1 Hardware Independence Usage Scenario 246
12.2.2 Server Consolidation Usage Scenario 247
12.2.3 Multitenant Usage Scenario 248
12.2.4 Virtual Appliance Usage Scenario 248
12.2.5 Cloud Deployment Usage Scenario 248

12.3 Reliability Requirements 248

12.3.1 General Availability Requirements 249
12.3.2 Service Reliability and Latency

Requirements 250
12.3.3 Overload Requirements 251
12.3.4 Online Capacity Growth and Degrowth 253
12.3.5 (Virtualization) Live Migration Requirements 253
12.3.6 System Transition Activity Requirements 254
12.3.7 Georedundancy and Service Continuity

Requirements 255

12.4 Qualitative Reliability Analysis 256

12.4.1 SPOF Analysis for Virtualized Applications 256
12.4.2 Failure Mode Effects Analysis for Virtualized

Applications 258
12.4.3 Capacity Growth and Degrowth Analysis 258

12.5 Quantitative Reliability Budgeting and Modeling 259

12.5.1 Availability (Downtime) Modeling 259
12.5.2 Converging Downtime Budgets and Targets 260
12.5.3 Managing Maintenance Budget Allocation 260

CONTENTS xv

12.6 Robustness Testing 260

12.6.1 Baseline Robustness Testing 261
12.6.2 Advanced Topic: Can Virtualization Enable Better

Robustness Testing? 265

12.7 Stability Testing 267

12.8 Field Performance Analysis 268

12.9 Reliability Roadmap 269

12.10 Hardware Reliability 270

13 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS 271
13.1 Solution Design for Reliability 271

13.2 Solution Scope and Expectations 273

13.3 Reliability Requirements 275

13.3.1 Solution Availability Requirements 275
13.3.2 Solution Reliability Requirements 276
13.3.3 Disaster Recovery Requirements 277
13.3.4 Elasticity Requirements 277
13.3.5 Specifying Confi guration Parameters 278

13.4 Solution Modeling and Analysis 279

13.4.1 Reliability Block Diagram of Cloud Data
Center Deployment 279

13.4.2 Solution Failure Mode Effects Analysis 280
13.4.3 Solution Service Transition Activity Effects Analysis 280
13.4.4 Cloud Data Center Service Availability

(MP 2) Analysis 280
13.4.5 Aggregate Service Availability (MP 3) Modeling 281
13.4.6 Recovery Point Objective Analysis 285

13.5 Element Reliability Diligence 285

13.6 Solution Testing and Validation 285

13.6.1 Robustness Testing 286
13.6.2 Service Reliability Testing 286
13.6.3 Georedundancy Testing 286
13.6.4 Elasticity and Orchestration Testing 287
13.6.5 Stability Testing 287
13.6.6 In Service Testing 288

13.7 Track and Analyze Field Performance 288

13.7.1 Cloud Service Measurements 289
13.7.2 Solution Reliability Roadmapping 291

13.8 Other Solution Reliability Diligence Topics 292

13.8.1 Service-Level Agreements 292
13.8.2 Cloud Service Provider Selection 293
13.8.3 Written Reliability Plan 293

xvi CONTENTS

14 SUMMARY 296
14.1 Service Reliability and Service Availability 297

14.2 Failure Accountability and Cloud Computing 299

14.3 Factoring Service Downtime 301

14.4 Service Availability Measurement Points 303

14.5 Cloud Capacity and Elasticity Considerations 306

14.6 Maximizing Service Availability 306

14.6.1 Reducing Product Attributable Downtime 307
14.6.2 Reducing Data Center Attributable Downtime 307
14.6.3 Reducing IT Service Management Downtime 307
14.6.4 Reducing Disaster Recovery Downtime 308
14.6.5 Optimal Cloud Service Availability 308

14.7 Reliability Diligence 309

14.8 Concluding Remarks 310

Abbreviations 311

References 314

About the Authors 318

Index 319

xvii

 Figure 1.1 Service Models 10

 Figure 1.2 OpenCrowd ’ s Cloud Taxonomy 11

 Figure 1.3 Roles in Cloud Computing 13

 Figure 2.1 Virtualizing Resources 18

 Figure 2.2 Type 1 and Type 2 Hypervisors 19

 Figure 2.3 Full Virtualization 21

 Figure 2.4 Paravirtualization 21

 Figure 2.5 Operating System Virtualization 22

 Figure 2.6 Virtualized Machine Lifecycle State Transitions 25

 Figure 3.1 Fault Activation and Failures 30

 Figure 3.2 Minimum Chargeable Service Disruption 31

 Figure 3.3 Eight - Ingredient (“ 8i ”) Framework 32

 Figure 3.4 Eight - Ingredient plus Data plus Disaster (8i + 2d) Model 34

 Figure 3.5 MTBF and MTTR 36

 Figure 3.6 Service and Network Element Impact Outages of Redundant
Systems 38

 Figure 3.7 Sample DSL Solution 39

 Figure 3.8 Transaction Latency Distribution for Sample Service 47

 Figure 3.9 Requirements Overlaid on Service Latency Distribution
for Sample Solution 48

 Figure 3.10 Maximum Acceptable Service Latency 49

 Figure 3.11 Downtime of Simplex Systems 50

 Figure 3.12 Downtime of Redundant Systems 51

 Figure 3.13 Simplifi ed View of High Availability 54

 Figure 3.14 High Availability Example 55

 Figure 3.15 Disaster Recovery Objectives 57

 Figure 3.16 ITU - T G.114 Bearer Delay Guideline 61

 Figure 4.1 TL 9000 Outage Attributability Overlaid on Augmented
8i + 2d Framework 72

 Figure 4.2 Outage Responsibilities Overlaid on Cloud 8i + 2d Framework 73

FIGURES

xviii FIGURES

 Figure 4.3 ITIL Service Management Visualization 75

 Figure 4.4 IT Service Management Activities to Minimize Service
Availability Risk 79

 Figure 4.5 8i + 2d Attributability by Process or Best Practice Areas 81

 Figure 4.6 Traditional Error Vectors 84

 Figure 4.7 IaaS Provider Responsibilities for Traditional Error Vectors 84

 Figure 4.8 Software Supplier (and SaaS) Responsibilities for Traditional
Error Vectors 85

 Figure 5.1 Sample Reliability Block Diagram 91

 Figure 5.2 Traversal of Sample Reliability Block Diagram 91

 Figure 5.3 Nominal System Reliability Block Diagram 92

 Figure 5.4 Reliability Block Diagram of Full virtualization 95

 Figure 5.5 Reliability Block Diagram of OS Virtualization 96

 Figure 5.6 Reliability Block Diagram of Paravirtualization 97

 Figure 5.7 Reliability Block Diagram of Coresident Application
Deployment 98

 Figure 5.8 Canonical Virtualization RBD 99

 Figure 5.9 Latency of Traditional Recovery Options 103

 Figure 5.10 Traditional Active - Standby Redundancy via Active
VM Virtualization 104

 Figure 5.11 Reboot of a Virtual Machine 104

 Figure 5.12 Reset of a Virtual Machine 105

 Figure 5.13 Redundancy via Paused VM Virtualization 106

 Figure 5.14 Redundancy via Suspended VM Virtualization 106

 Figure 5.15 Nominal Recovery Latency of Virtualized and Traditional
Options 107

 Figure 5.16 Server Consolidation Using Virtualization 110

 Figure 5.17 Simplifi ed Simplex State Diagram 111

 Figure 5.18 Downtime Drivers for Redundancy Pairs 112

 Figure 6.1 Hardware Failure Rate Questions 120

 Figure 6.2 Application Reliability Block Diagram with Virtual Devices 124

 Figure 6.3 Virtual CPU 125

 Figure 6.4 Virtual NIC 128

 Figure 7.1 Sample Application Resource Utilization by Time of Day 133

 Figure 7.2 Example of Extraordinary Event Traffi c Spike 134

 Figure 7.3 The Slashdot Effect: Traffi c Load Over Time (in Hours) 134

 Figure 7.4 Offered Load, Service Reliability, and Service Availability of
a Traditional System 135

FIGURES xix

 Figure 7.5 Visualizing VM Growth Scenarios 138

 Figure 7.6 Nominal Capacity Model 139

 Figure 7.7 Implementation Architecture of Compute Capacity Model 139

 Figure 7.8 Orderly Reconfi guration of the Capacity Model 140

 Figure 7.9 Slew Rate of Square Wave Amplifi cation 141

 Figure 7.10 Slew Rate of Rapid Elasticity 142

 Figure 7.11 Elasticity Timeline by ODCA SLA Level 143

 Figure 7.12 Capacity Management Process 144

 Figure 7.13 Successful Cloud Elasticity 148

 Figure 7.14 Elasticity Failure Model 148

 Figure 7.15 Virtualized Application Instance Failure Model 150

 Figure 7.16 Canonical Capacity Management Failure Scenarios 154

 Figure 7.17 ITU X.805 Security Dimensions, Planes, and Layers 158

 Figure 7.18 Leveraging Security and Network Infrastructure to Mitigate
Overload Risk 161

 Figure 8.1 Service Orchestration 167

 Figure 8.2 Example of Cloud Bursting 170

 Figure 10.1 Canonical Single Data Center Application Deployment
Architecture 188

 Figure 10.2 RBD of Sample Application on Blade - Based Server
Hardware 192

 Figure 10.3 RBD of Sample Application on IaaS Platform 192

 Figure 10.4 Sample End - to - End Solution 197

 Figure 10.5 Sample Distributed Cloud Architecture 199

 Figure 10.6 Sample Recovery Scenario in Distributed Cloud
Architecture 200

 Figure 10.7 Simplifi ed Responsibilities for a Canonical Cloud
Application 203

 Figure 10.8 Recommended Cloud - Related Service Availability
Measurement Points 205

 Figure 10.9 Canonical Example of MP 1 and MP 2 206

 Figure 10.10 End - to - End Service Availability Key Quality Indicators 207

 Figure 11.1 Virtual Machine Live Migration 219

 Figure 11.2 Active – Standby Markov Model 227

 Figure 11.3 Pie Chart of Canonical Hardware Downtime Prediction 228

 Figure 11.4 RBD for the Hypothetical Web Server Application 237

 Figure 11.5 Horizontal Growth of Hypothetical Application 238

xx FIGURES

 Figure 11.6 Outgrowth of Hypothetical Application 239

 Figure 11.7 Aggressive Protocol Retry Strategy 239

 Figure 11.8 Data Replication of Hypothetical Application 240

 Figure 11.9 Disaster Recovery of Hypothetical Application 241

 Figure 11.10 Optimal Availability Architecture of Hypothetical
Application 242

 Figure 12.1 Traditional Design for Reliability Process 245

 Figure 12.2 Mapping Virtual Machines across Hypervisors 257

 Figure 12.3 A Virtualized Server Failure Scenario 257

 Figure 12.4 Robustness Testing Vectors for Virtualized Applications 265

 Figure 12.5 System Design for Reliability as a Deming Cycle 268

 Figure 13.1 Solution Design for Reliability 272

 Figure 13.2 Sample Solution Scope and KQI Expectations 274

 Figure 13.3 Sample Cloud Data Center RBD 279

 Figure 13.4 Estimating MP 2 281

 Figure 13.5 Modeling Cloud - Based Solution with Client - Initiated
Recovery Model 283

 Figure 13.6 Client - Initiated Recovery Model 283

 Figure 14.1 Failure Impact Duration and High Availability Goals 298

 Figure 14.2 Eight - Ingredient Plus Data Plus Disaster (8i + 2d) Model 299

 Figure 14.3 Traditional Outage Attributability 300

 Figure 14.4 Sample Outage Accountability Model for Cloud Computing 301

 Figure 14.5 Outage Responsibilities of Cloud by Process 302

 Figure 14.6 Measurement Points s (MP s) 1, 2, 3, and 4 305

 Figure 14.7 Design for Reliability of Cloud - Based Solutions 310

xxi

 Table 2.1 Comparison of Server Virtualization Technologies 24

 Table 2.2 Virtual Machine Lifecycle Transitions 27

 Table 3.1 Service Availability and Downtime Ratings 40

 Table 3.2 Mean Opinion Scores 59

 Table 4.1 ODCA ’ s Data Center Classifi cation 88

 Table 4.2 ODCA ’ s Data Center Service Availability Expectations
by Classifi cation 89

 Table 5.1 Example Failure Mode Effects Analysis 94

 Table 5.2 Failure Mode Effect Analysis Figure for Coresident
Applications 99

 Table 5.3 Comparison of Nominal Software Availability Parameters 114

 Table 6.1 Example of Hardware Availability as a Function
of MTTR/MTTRS 130

 Table 7.1 ODCA IaaS Elasticity Objectives 143

 Table 9.1 ODCA IaaS Recoverability Objectives 179

 Table 10.1 Sample Traditional Five 9 ’ s Downtime Budget 190

 Table 10.2 Sample Basic Virtualized Five 9 ’ s Downtime Budget 191

 Table 10.3 Canonical Application - Attributable Cloud - Based Five 9 ’ s
Downtime Budget 195

 Table 10.4 Evolution of Sample Downtime Budgets 196

 Table 11.1 Example Service Transition Activity Failure Mode
Effect Analysis 218

 Table 11.2 Canonical Hardware Downtime Prediction 227

 Table 11.3 Summary of Hardware Downtime Mitigation Techniques
for Cloud Computing 231

 Table 12.1 Sample Service Latency and Reliability Requirements at MP 2 250

 Table 13.1 Sample Solution Latency and Reliability Requirements 276

 Table 13.2 Modeling Input Parameters 284

 Table 14.1 Evolution of Sample Downtime Budgets 304

TABLES

xxiii

 Equation 3.1 Basic Availability Formula 35

 Equation 3.2 Practical System Availability Formula 35

 Equation 3.3 Standard Availability Formula 35

 Equation 3.4 Estimation of System Availability from MTBF and MTTR 36

 Equation 3.5 Recommended Service Availability Formula 38

 Equation 3.6 Sample Partial Outage Calculation 39

 Equation 3.7 Service Reliability Formula 44

 Equation 3.8 DPM Formula 44

 Equation 3.9 Converting DPM to Service Reliability 44

 Equation 3.10 Converting Service Reliability to DPM 44

 Equation 3.11 Sample DPM Calculation 45

 Equation 6.1 Availability as a Function of MTBF/MTTR 130

 Equation 11.1 Maximum Theoretical Availability across Redundant
Elements 241

 Equation 11.2 Maximum Theoretical Service Availability 242

EQUATIONS

xxv

 Cloud computing is a new paradigm for delivering information services to end users,
offering distinct advantages over traditional IS/IT deployment models, including being
more economical and offering a shorter time to market. Cloud computing is defi ned
by a handful of essential characteristics: on - demand self service, broad network access,
resource pooling, rapid elasticity, and measured service. Cloud providers offer a variety
of service models, including infrastructure as a service, platform as a service, and
software as a service; and cloud deployment options include private cloud, community
cloud, public cloud and hybrid clouds. End users naturally expect services offered via
cloud computing to deliver at least the same service reliability and service availability
as traditional service implementation models. This book analyzes the risks to cloud -
 based application deployments achieving the same service reliability and availability
as traditional deployments, as well as opportunities to improve service reliability and
availability via cloud deployment. We consider the service reliability and service avail-
ability risks from the fundamental defi nition of cloud computing — the essential char-
acteristics — rather than focusing on any particular virtualization hypervisor software or
cloud service offering. Thus, the insights of this higher level analysis and the recom-
mendations should apply to all cloud service offerings and application deployments.
This book also offers recommendations on architecture, testing, and engineering dili-
gence to assure that cloud deployed applications meet users ’ expectations for service
reliability and service availability.

 Virtualization technology enables enterprises to move their existing applications
from traditional deployment scenarios in which applications are installed directly on
native hardware to more evolved scenarios that include hardware independence and
server consolidation. Use of virtualization technology is a common characteristic of
cloud computing that enables cloud service providers to better manage usage of their
resource pools by multiple cloud consumers. This book also considers the reliability
and availability risks along this evolutionary path to guide enterprises planning the
evolution of their application to virtualization and on to full cloud computing enable-
ment over several releases.

AUDIENCE

 The book is intended for IS/IT system and solution architects, developers, and engi-
neers, as well as technical sales, product management, and quality management
professionals.

INTRODUCTION

xxvi INTRODUCTION

ORGANIZATION

 The book is organized into three parts: Part I, “ Basics, ” Part II, “ Analysis, ” and Part
III — , “ Recommendations . ” Part I, “ Basics, ” defi nes key terms and concepts of cloud
computing, virtualization, service reliability, and service availability. Part I contains
three chapters:

 • Chapter 1 , “ Cloud Computing.” This book uses the cloud terminology and
taxonomy defi ned by the U.S. National Institute of Standards and Technology.
This chapter defi nes cloud computing and reviews the essential and common
characteristics of cloud computing. Standard service and deployment models of
cloud computing are reviewed, as well as roles of key cloud - related actors. Key
benefi ts and risks of cloud computing are summarized.

 • Chapter 2 , “ Virtualization. ” Virtualization is a common characteristic of cloud
computing. This chapter reviews virtualization technology, offers architectural
models for virtualization that will be analyzed, and compares and contrasts “ vir-
tualized ” applications to “ native ” applications.

 • Chapter 3 , “ Service Reliability and Service Availability. ” This chapter defi nes
service reliability and availability concepts, reviews how those metrics are mea-
sured in traditional deployments, and how they apply to virtualized and cloud
based deployments. As the telecommunications industry has very precise stan-
dards for quantifi cation of service availability and service reliability measure-
ments, concepts and terminology from the telecom industry will be presented in
this chapter and used in Part II, “ Analysis, ” and Part III, “ Recommendations. ”

Part II, “ Analysis, ” methodically analyzes the service reliability and availability risks
inherent in application deployments on cloud computing and virtualization technology
based on the essential and common characteristics given in Part I.

 • Chapter 4 , “ Analyzing Cloud Reliability and Availability. ” Considers the service
reliability and service availability risks that are inherent to the essential and
common characteristics, service model, and deployment model of cloud com-
puting. This includes implications of service transition activities, elasticity, and
service orchestration. Identifi ed risks are analyzed in detail in subsequent chap-
ters in Part II.

 • Chapter 5 , “ Reliability Analysis of Virtualization. ” Analyzes full virtualization,
OS virtualization, paravirtualization, and server virtualization and coresidency
using standard reliability analysis methodologies. This chapter also analyzes the
software reliability risks of virtualization and cloud computing.

 • Chapter 6 , “ Hardware Reliability, Virtualization, and Service Availability. ” This
chapter considers how hardware reliability risks and responsibilities shift as
applications migrate to virtualized and cloud - based hardware platforms, and how
hardware attributed service downtime is determined.

 • Chapter 7 , “ Capacity and Elasticity. ” The essential cloud characteristic of
rapid elasticity enables cloud consumers to dispense with the business risk of

INTRODUCTION xxvii

locking - in resources weeks or months ahead of demand. Rapid elasticity does,
however, introduce new risks to service quality, reliability, and availability that
must be carefully managed.

 • Chapter 8 , “ Service Orchestration Analysis. ” Service orchestration automates
various aspects of IT service management, especially activities associated with
capacity management. This chapter reviews policy - based management in the
context of cloud computing and considers the associated risks to service reli-
ability and service availability.

 • Chapter 9 , “ Geographic Distribution, Georedundancy, and Disaster Recovery. ”
 Geographic distribution of application instances is a common characteristic of
cloud computing and a best practice for disaster recovery. This chapter considers
the service availability implications of georedundancy on applications deployed
in clouds.

Part III, “ Recommendations, ” considers techniques to maximize service reliability
and service availability of applications deployed on clouds, as well as the design for
reliability diligence to assure that virtualized applications and cloud based solutions
meet or exceed the service reliability and availability of traditional deployments.

 • Chapter 10 , “ Applications, Solutions and Accountability. ” This chapter consid-
ers how virtualized applications fi t into service solutions, and explains how
application service downtime budgets change as applications move to the cloud.
This chapter also proposes four measurement points for service availability, and
discusses how accountability for impairments in each of those measurement
points is attributed.

 • Chapter 11 , “ Recommendations for Architecting a Reliable System. ” This
chapter covers architectures and techniques to maximize service availability and
service reliability via virtualization and cloud deployment. A simple case study
is given to illustrate key architectural points.

 • Chapter 12 , “ Design for Reliability of Virtualized Applications. ” This chapter
reviews how design for reliability diligence for virtualized applications differs
from reliability diligence for traditional applications.

 • Chapter 13 , “ Design for Reliability of Cloud Solutions. ” This chapter reviews
how design for reliability diligence for cloud deployments differs from reliability
diligence for traditional solutions.

 • Chapter 14 , “ Summary. ” This gives an executive summary of the analysis,
insights, and recommendations on assuring that reliability and availability of cloud -
based solutions meet or exceed the performance of traditional deployment.

ACKNOWLEDGMENTS

 The authors were greatly assisted by many deeply knowledgeable and insightful engi-
neers at Alcatel - Lucent, especially: Mark Clougherty, Herbert Ristock, Shawa Tam,
Rich Sohn, Bernard Bretherton, John Haller, Dan Johnson, Srujal Shah, Alan McBride,

xxviii INTRODUCTION

Lyle Kipp, and Ted East. Joe Tieu, Bill Baker, and Thomas Voith carefully reviewed
the early manuscript and provided keen review feedback. Abhaya Asthana, Kasper
Reinink, Roger Maitland, and Mark Cameron provided valuable input. Gary McElvany
raised the initial architectural questions that ultimately led to this work. This work
would not have been possible without the strong management support of Tina Hinch,
Werner Heissenhuber, Annie Lequesne, Vickie Owens - Rinn, and Dor Skuler.

 Cloud computing is an exciting, evolving technology with many avenues to
explore. Readers with comments or corrections on topics covered in this book, or topics
for a future edition of this book, are invited to send email to the authors (Eric.Bauer@
Alcatel - Lucent.com, Randee.Adams@Alcatel - Lucent.com, or pressbooks@ieee.org).

 Eric Bauer
 Randee Adams

I

BASICS

3

 The U.S. National Institute of Standards and Technology (NIST) defi nes cloud comput-
ing as follows:

 Cloud computing is a model for enabling ubiquitous, convenient, on - demand
network access to a shared pool of confi gurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction [NIST - 800 - 145] .

 This defi nition frames cloud computing as a “ utility ” (or a “ pay as you go ”) consump-
tion model for computing services, similar to the utility model deployed for electricity,
water, and telecommunication service. Once a user is connected to the computing (or
telecommunications, electricity, or water utility) cloud, they can consume as much
service as they would like whenever they would like (within reasonable limits), and
are billed for the resources consumed. Because the resources delivering the service can
be shared (and hence amortized) across a broad pool of users, resource utilization and
operational effi ciency can be higher than they would be for dedicated resources for
each individual user, and thus the price of the service to the consumer may well be
lower from a cloud/utility provider compared with the alternative of deploying and

1

CLOUD COMPUTING

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

4 CLOUD COMPUTING

operating private resources to provide the same service. Overall, these characteristics
facilitate outsourcing production and delivery of these crucial “ utility ” services. For
example, how many individuals or enterprises prefer to generate all of their own elec-
tricity rather than purchasing it from a commercial electric power supplier?

 This chapter reviews the essential characteristics of cloud computing, as well as
several common characteristics of cloud computing, considers how cloud data centers
differ from traditional data centers, and discusses the cloud service and cloud deploy-
ment models. The terminologies for the various roles in cloud computing that will be
used throughout the book are defi ned. The chapter concludes by reviewing the benefi ts
of cloud computing.

1.1 ESSENTIAL CLOUD CHARACTERISTICS

 Per [NIST - 800 - 145] , there are fi ve essential functional characteristics of cloud
computing:

 1. on - demand self service;

 2. broad network access;

 3. resource pooling;

 4. rapid elasticity; and

 5. measured service.

 Each of these is considered individually.

1.1.1 On-Demand Self -Service

 Per [NIST - 800 - 145] , the essential cloud characteristic of “ on - demand self - service ”
means “ a consumer can unilaterally provision computing capabilities, such as server
time and network storage, as needed automatically without requiring human interaction
with each service ’ s provider. ” Modern telecommunications networks offer on - demand
self service: one has direct dialing access to any other telephone whenever one wants.
This behavior of modern telecommunications networks contrasts to decades ago when
callers had to call the human operator to request the operator to place a long distance
or international call on the user ’ s behalf. In a traditional data center, users might have
to order server resources to host applications weeks or months in advance. In the cloud
computing context, on - demand self service means that resources are “ instantly ” avail-
able to service user requests, such as via a service/resource provisioning website or via
API calls.

1.1.2 Broad Network Access

 Per [NIST - 800 - 145] “ broad network access ” means “ capabilities are available over the
network and accessed through standard mechanisms that promote use by heterogeneous
thin or thick client platforms (e.g., mobile phones, laptops, and PDAs). ” Users expect

ESSENTIAL CLOUD CHARACTERISTICS 5

to access cloud - based services anywhere there is adequate IP networking, rather than
requiring the user to be in a particular physical location. With modern wireless net-
works, users expect good quality wireless service anywhere they go. In the context of
cloud computing, this means users want to access the cloud - based service via whatever
wireline or wireless network device they wish to use over whatever IP access network
is most convenient.

1.1.3 Resource Pooling

 Per [NIST - 800 - 145] , the essential characteristic of “ resource pooling ” is defi ned as:
 “ the provider ’ s computing resources are pooled to serve multiple consumers using a
multi - tenant model, with different physical and virtual resources dynamically assigned
and reassigned according to consumer demand. ” Service providers deploy a pool of
servers, storage devices, and other data center resources that are shared across many
users to reduce costs to the service provider, as well as to the cloud consumers that pay
for cloud services. Ideally, the cloud service provider will intelligently select which
resources from the pool to assign to each cloud consumer ’ s workload to optimize the
quality of service experienced by each user. For example, resources located on servers
physically close to the end user (and which thus introduce less transport latency) may
be selected, and alternate resources can be automatically engaged to mitigate the impact
of a resource failure event. This is essentially the utility model applied to computing.
For example, electricity consumers don ’ t expect that a specifi c electrical generator has
been dedicated to them personally (or perhaps to their town); they just want to know
that their electricity supplier has pooled the generator resources so that the utility will
reliably deliver electricity despite inevitable failures, variations in load, and glitches.

 Computing resources are generally used on a very bursty basis (e.g., when a key
is pressed or a button is clicked). Timeshared operating systems were developed
decades ago to enable a pool of users or applications with bursty demands to effi ciently
share a powerful computing resource. Today ’ s personal computer operating systems
routinely support many simultaneous applications on a PC or laptop, such as simultane-
ously viewing multiple browser windows, doing e - mail, and instant messaging, and
having virus and malware scanners running in the background, as well as all the infra-
structure software that controls the keyboard, mouse, display, networking, real - time
clock, and so on. Just as intelligent resource sharing on your PC enables more useful
work to be done cost effectively than would be possible if each application had a dedi-
cated computing resource, intelligent resource sharing in a computing cloud environ-
ment enables more applications to be served on less total computing hardware than
would be required with dedicated computing resources. This resource sharing lowers
costs for the data center hosting the computing resources for each application, and this
enables lower prices to be charged to cloud consumers than would be possible for
dedicated computing resources.

1.1.4 Rapid Elasticity

 [NIST - 800 - 145] describes “ rapid elasticity ” as “ capabilities can be rapidly and elasti-
cally provisioned, in some cases automatically, to quickly scale out, and rapidly released

6 CLOUD COMPUTING

to quickly scale in. To the consumer, the capabilities available for provisioning often
appear to be unlimited and can be purchased in any quantity at any time. ”

 Forecasting future demand is always hard, and there is always the risk that unfore-
seen events will change plans and thereby increase or decrease the demand for service.
For example, electricity demand spikes on hot summer afternoons when customers
crank up their air conditioners, and business applications have peak usage during busi-
ness hours, while entertainment applications peak in evenings and on weekends. In
addition, most application services have time of day, day of week, and seasonal varia-
tions in traffi c volumes. Elastically increasing service capacity during busy periods and
releasing capacity during off - peak periods enables cloud consumers to minimize costs
while meeting service quality expectations. For example, retailers might experience
heavy workloads during the holiday shopping season and light workloads the rest of
the year; elasticity enables them to pay only for the computing resources they need in
each season, thereby enabling computing expenses to track more closely with revenue.
Likewise, an unexpectedly popular service or particularly effective marketing campaign
can cause demand for a service to spike beyond planned service capacity. End users
expect available resources to “ magically ” expand to accommodate the offered service
load with acceptable service quality. For cloud computing, this means all users are
served with acceptable service quality rather than receiving “ busy ” or “ try again later ”
messages, or experiencing unacceptable service latency or quality.

 Just as electricity utilities can usually source additional electric power from neigh-
boring electricity suppliers when their users ’ demand outstrips the utility ’ s generating
capacity, arrangements can be made to overfl ow applications from one cloud that is
operating at capacity to other clouds that have available capacity. This notion of grace-
fully overfl owing application load from one cloud to other clouds is called “ cloud
bursting. ”

1.1.5 Measured Service

 [NIST - 800 - 145] describes the essential cloud computing characteristic of “ measured
service ” as “ cloud systems automatically control and optimize resource use by lever-
aging a metering capability at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage
can be monitored, controlled, and reported, providing transparency for both the provider
and the consumer of the utilized service. ” Cloud consumers want the option of usage -
 based (or pay - as - you - go) pricing in which their price is based on the resources actu-
ally consumed, rather than being locked into a fi xed pricing arrangement. Measuring
resource consumption and appropriately charging cloud consumers for their actual
resource consumption encourages them not to squander resources and release
unneeded resources so they can be used by other cloud consumers.

1.2 COMMON CLOUD CHARACTERISTICS

 NIST originally included eight common characteristics of cloud computing in their
defi nition [NIST - B] , but as these characteristics were not essential, they were omitted

BUT WHAT, EXACTLY, IS CLOUD COMPUTING? 7

from the formal defi nition of cloud computing. Nevertheless, six of these eight common
characteristics do impact service reliability and service availability, and thus will be
considered later in this book.

 • Virtualization . By untethering application software from specifi c dedicated hard-
ware, virtualization technology (discussed in Chapter 2 , “ Virtualization ”) gives
cloud service providers control to manage workloads across massive pools of
compute servers.

 • Geographic Distribution . Having multiple geographically distributed data center
sites enables cloud providers fl exibility to assign a workload to resources close
to the end user. For example, for real - time gaming, users are more likely to have
an excellent quality of experience via low service latency if they are served by
resources geographically close to them than if they are served by resources on
another continent. In addition, geographic distribution in the form of georedun-
dancy is essential for disaster recovery and business continuity planning. Opera-
tionally, this means engineering for suffi cient capacity and network access across
several geographically distributed sites so that a single disaster will not adversely
impact more than that single site, and the impacted workload can be promptly
redeployed to nonaffected sites.

 • Resilient Computing . Hardware devices, like hard disk drives, wear out and fail
for well - understood physical reasons. As the pool of hardware resources increases,
the probability that some hardware device will fail in any week, day, or hour
increases as well. Likewise, as the number of online servers increases, so does
the risk that software running on one of those online server instances will fail.
Thus, cloud computing applications and infrastructure must be designed to rou-
tinely detect, diagnose, and recover service following inevitable failures without
causing unacceptable impairments to user service.

 • Advanced Security . Computing clouds are big targets for cybercriminals and
others intent on disrupting service, and the homogeneity and massive scale of
clouds make them particularly appealing. Advanced security techniques, tools,
and policies are essential to assure that malevolent individuals or organizations
don ’ t penetrate the cloud and compromise application service or data.

 • Massive Scale . To maximize operational effi ciencies that drive down costs, suc-
cessful cloud deployments will be of massive scale.

 • Homogeneity . To maximize operational effi ciencies, successful cloud deploy-
ments will limit the range of different hardware, infrastructure, software plat-
forms, policies and procedures they support.

1.3 BUT WHAT, EXACTLY, IS CLOUD COMPUTING?

 Fundamentally, cloud computing is a new business model for operating data centers.
Thus, one can consider cloud computing in two steps:

8 CLOUD COMPUTING

 1. What is a data center?

 2. How is a cloud data center different from a traditional data center?

1.3.1 What Is a Data Center?

 A data center is a physical space that is environmentally controlled with clean electrical
power and network connectivity that is optimized for hosting servers. The temperature
and humidity of the data center environment are controlled to enable proper operation
of the equipment, and the facility is physically secured to prevent deliberate or acci-
dental damage to the physical equipment. This facility will have one or more connec-
tions to the public Internet, often via redundant and physically separated cables into
redundant routers. Behind the routers will be security appliances, like fi rewalls or deep
packet inspection elements, to enforce a security perimeter protecting servers in the
data center. Behind the security appliances are often load balancers which distribute
traffi c across front end servers like web servers. Often there are one or two tiers of
servers behind the application front end like second tier servers implementing applica-
tion or business logic and a third tier of database servers. Establishing and operating a
traditional data center facility — including IP routers and infrastructure, security appli-
ances, load balancers, servers ’ storage and supporting systems — requires a large capital
outlay and substantial operating expenses, all to support application software that often
has widely varying load so that much of the resource capacity is often underutilized.

 The Uptime Institute [Uptime and TIA942] defi nes four tiers of data centers that
characterize the risk of service impact (i.e., downtime) due to both service management
activities and unplanned failures:

 • Tier I . Basic
 • Tier II . Redundant components
 • Tier III . Concurrently maintainable
 • Tier IV . Fault tolerant

 Tier I “ basic ” data centers must be completely shut down to execute planned and pre-
ventive maintenance, and are fully exposed to unplanned failures. [UptimeTiers] offers
 “ Tier 1 sites typically experience 2 separate 12 - hour, site - wide shutdowns per year for
maintenance or repair work. In addition, across multiple sites and over a number of
years, Tier I sites experience 1.2 equipment or distribution failures on an average year. ”
This translates to a data center availability rating of 99.67% with nominally 28.8 hours
of downtime per year.

 Tier II “ redundant component ” data centers include some redundancy and so are
less exposed to service downtime. [UptimeTiers] offers “ the redundant components of
Tier II topology provide some maintenance opportunity leading to just 1 site - wide
shutdown each year and reduce the number of equipment failures that affect the IT
operations environment. ” This translates to a data center availability rating of 99.75%
with nominally 22 hours of downtime per year.

 Tier III “ concurrently maintainable ” data centers are designed with suffi cient
redundancy that all service transition activities can be completed without disrupting

SERVICE MODELS 9

service. [UptimeTiers] offers “ experience in actual data centers shows that operating
better maintained systems reduces unplanned failures to a 4 - hour event every 2.5
years. . . . ” This translates to a data center availability rating of 99.98%, with nominally
1.6 hours of downtime per year.

 Tier IV “ fault tolerant ” data centers are designed to withstand any single failure
and permit service transition type activities, such as software upgrade to complete with
no service impact. [UptimeTiers] offers “ Tier IV provides robust, Fault Tolerant site
infrastructure, so that facility events affecting the computer room are empirically
reduced to (1) 4 - hour event in a 5 year operating period. . . . ” This translates to a data
center availability rating of 99.99% with nominally 0.8 hours of downtime per year.

1.3.2 How Does Cloud Computing Differ
from Traditional Data Centers?

 Not only are data centers expensive to build and maintain, but deploying an application
into a data center may mean purchasing and installing the computing resources to host
that application. Purchasing computing resources implies a need to do careful capacity
planning to decide exactly how much computing resource to invest in; purchase too
little, and users will experience poor service; purchase too much and excess resources
will be unused and stranded. Just as electrical power utilities pool electric power -
 generating capacity to offer electric power as a service, cloud computing pools comput-
ing resources, offers those resources to cloud consumers on - demand, and bills cloud
consumers for resources actually used. Virtualization technology makes operation and
management of pooled computing resources much easier. Just as electric power utilities
gracefully increase and decrease the fl ow of electrical power to customers to meet their
individual demand, clouds elastically grow and shrink the computing resources avail-
able for individual cloud consumer ’ s workloads to match changes in demand. Geo-
graphic distribution of cloud data centers can enable computing services to be offered
physically closer to each user, thereby assuring low transmission latency, as well as
supporting disaster recovery to other data centers. Because multiple applications and
data sets share the same physical resources, advanced security is essential to protect
each cloud consumer. Massive scale and homogeneity enable cloud service providers
to maximize effi ciency and thus offer lower costs to cloud consumers than traditional
or hosted data center options. Resilient computing architectures become important
because hardware failures are inevitable, and massive data centers with lots of hardware
means lots of failures; resilient computing architectures assure that those hardware
failures cause minimal service disruption. Thus, the difference between a traditional
data center and a cloud computing data center is primarily the business model along
with the policies and software that support that business model.

1.4 SERVICE MODELS

 NIST defi nes three service models for cloud computing: infrastructure as a service,
platform as a service, and software as a service. These cloud computing service models
logically sit above the IP networking infrastructure, which connects end users to the

10 CLOUD COMPUTING

applications hosted on cloud services. Figure 1.1 visualizes the relationship between
these service models.

 The cloud computing service models are formally defi ned as follows.

 • Infrastructure as a Service (IaaS) . “ [T]he capability provided to the consumer
is to provision processing, storage, networks, and other fundamental computing
resources where the consumer is able to deploy and run arbitrary software, which
can include operating systems and applications. The consumer does not manage
or control the underlying cloud infrastructure but has control over operating
systems, storage, deployed applications, and possibly limited control of select
networking components (e.g., host fi rewalls) ” [NIST - 800 - 145] . IaaS services
include: compute, storage, content delivery networks to improve performance
and/or cost of serving web clients, and backup and recovery service.

 • Platform as a Service (PaaS) . “ [T]he capability provided to the consumer is to
deploy onto the cloud infrastructure consumer - created or acquired applications
created using programming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud infrastructure includ-
ing network, servers, operating systems, or storage, but has control over the
deployed applications and possibly application hosting environment confi gura-
tions ” [NIST - 800 - 145] . PaaS services include: operating system, virtual desktop,
web services delivery and development platforms, and database services.

 • Software as a Service (SaaS) . “ [T]he capability provided to the consumer is
to use the provider ’ s applications running on a cloud infrastructure. The con-
sumer does not manage or control the underlying cloud infrastructure including

 Figure 1.1. Service Models.

Software as a
Service (SaaS) Application

Platform as a
Service (PaaS) Middleware

Infrastructure as a
Service (IaaS)

Operating
System

Virtualization
Hypervisor

Hardware

CLOUD DEPLOYMENT MODELS 11

network, servers, operating systems, storage, or even individual application capa-
bilities, with the possible exception of limited user - specifi c application confi gu-
ration settings ” [NIST - 800 - 145] . SaaS applications include: e - mail and offi ce
productivity; customer relationship management (CRM), enterprise resource
planning (ERP); social networking; collaboration; and document and content
management.

 Figure 1.2 gives concrete examples of IaaS, PaaS, and SaaS offerings.

1.5 CLOUD DEPLOYMENT MODELS

 NIST recognizes four cloud deployment models:

 • Private Cloud . “ the cloud infrastructure is operated solely for an organization.
It may be managed by the organization or a third party and may exist on premise
or off premise. ” [NIST - 800 - 145]

Figure 1.2. OpenCrowd’s Cloud Taxonomy.

Source: Copyright 2010, Image courtesy of OpenCrowd, opencrowd.com.

12 CLOUD COMPUTING

 • Community Cloud . “ the cloud infrastructure is shared by several organizations
and supports a specifi c community that has shared concerns (e.g., mission, secu-
rity requirements, policy, and compliance considerations). It may be managed by
the organizations or a third party and may exist on premise or off premise ”
 [NIST - 800 - 145] .

 • Public Cloud . “ the cloud infrastructure is made available to the general public
or a large industry group and is owned by an organization selling cloud services ”
 [NIST - 800 - 145] .

 • Hybrid Cloud . “ the cloud infrastructure is a composition of two or more
clouds (private, community, or public) that remain unique entities but are bound
together by standardized or proprietary technology that enables data and applica-
tion portability (e.g., cloud bursting for load - balancing between clouds) ” [NIST -
800 - 145] .

 Cloud service providers typically offer either private, community or public clouds, and
cloud consumers select which of those three to use, or adopt a hybrid deployment
strategy blending private, community and/or public clouds.

1.6 ROLES IN CLOUD COMPUTING

 Cloud computing opens up interfaces between applications, platform, infrastructure,
and network layers, thereby enabling different layers to be offered by different service
providers. While NIST [NIST - C] and some other organizations propose new roles of
cloud service consumers , cloud service distributors , cloud service developers and
vendors , and cloud service providers , the authors will use the more traditional roles of
suppliers, service providers, cloud consumers, and end users, as illustrated in Figure
 1.3 .

 Specifi c roles in Figure 1.3 are defi ned below.

 • Suppliers develop the equipment, software, and integration services that imple-
ment the cloud - based and client application software, the platform software, and
the hardware - based systems that support the networking, compute, and storage
that underpin cloud computing.

 • Service providers own, operate, and maintain the solutions, systems, equipment,
and networking needed to deliver service to end users. The specifi c service pro-
vider roles are defi ned as:
� IP network service providers carry IP communications between end user ’ s

equipment and IaaS provider ’ s equipment, as well as between IaaS data centers.
Network service providers operate network equipment and facilities to provide
Internet access and/or wide area networking service. Note that while there
will often be only a single infrastructure, platform, and software service
provider for a particular cloud - based application, there may be several differ-
ent network service providers involved in IP networking between the IaaS

ROLES IN CLOUD COMPUTING 13

service provider ’ s equipment and end users ’ equipment. Internet service pro-
viders and Internet access providers are examples of network service providers.
While IP networking service is not explicitly recognized in NIST ’ s service
model, these service providers have a crucial role in delivering end - to - end
services to cloud users and can thus impact the quality of experience for end
users.

 � IaaS providers “ have control of hardware, hypervisor and operating system, to
provide services to consumers. For IaaS, the provider maintains the storage,
database, message queue or other middleware, or the hosting environment for
virtual machines. The [PaaS/SaaS/cloud] consumer uses that service as if it was
a disk drive, database, message queue, or machine, but they cannot access the
infrastructure that hosts it ” [NIST - C] . Most IaaS providers focus on providing
complete computing platforms for consumers ’ VMs, including operating
system, memory, storage, and processing power. Cloud consumers often pay
for only what they use, which fi ts nicely into most companys ’ computing
budget.

 � PaaS providers “ take control of hardware, hypervisor, OS and middleware, to
provide services. For PaaS, the provider manages the cloud infrastructure for
the platform, typically a framework for a particular type of application. The
consumer ’ s application cannot access the infrastructure underneath the plat-
form ” [NIST - C] . PaaS providers give developers complete development envi-
ronments in which to code, host, and deliver applications. The development
environment typically includes the underlying infrastructure, development
tools, APIs, and other related services.

 Figure 1.3. Roles in Cloud Computing.

User

UE

Infrastructure
as a service

Platform
as a service

Software
as a service

Network
as a service

Network
as a service

Cloud consumers offer applications
hosted on resources operated

by XaaS service providers

Suppliers
of

equipment,
software, &
integration

End Users (or
just Users)

consume
application

services via some
user equipment
(UE) or device

Service Providers operate and offer
networking, infrastructure, platforms,

and software as services

14 CLOUD COMPUTING

� SaaS providers “ rely on hardware, hypervisor, OS, middleware, and application
layers to provide services. For SaaS, the provider installs, manages and main-
tains the software. The provider does not necessarily own the physical infra-
structure in which the software is running. Regardless, the consumer does not
have access to the infrastructure; they can access only the application ” [NIST - C] .
Common SaaS offerings include desktop productivity, collaboration, sales and
customer relationship management, and documentation management.

 • Cloud consumers , (or simply “ consumers ”) are generally enterprises offering
specifi c application services to end users by arranging to have appropriately
confi gured software execute on XaaS resources hosted by one or more service
providers. Cloud consumers pay service providers for cloud XaaS resources
consumed. End users are typically aware only of the enterprise ’ s application; the
services offered by the various XaaS service providers are completely invisible
to end users.

 • End users (or simply users) use the software applications hosted on the cloud.
Users access cloud - based applications via IP networking from some user equip-
ment, such as a smartphone, laptop, tablet, or PC.

 There are likely to be several different suppliers and service providers supporting a
single cloud consumer ’ s application to a community of end users. The cloud consumer
may have some supplier role in developing and integrating the software and solution.
It is possible that the end users are in the same organization as the one that offers the
cloud - based service to end users.

1.7 BENEFITS OF CLOUD COMPUTING

 The key benefi t of cloud computing for many enterprises is that it turns IT from a capital
intensive concern to a pay - as - you - go activity where operating expenses track usage —
 and ideally computing expenses track revenue. Beyond this strategic capital expense
to operating expense shift, there are other benefi ts of cloud computing from [Kundra]
and others:

 • Increased Flexibility . Rapid elasticity of cloud computing enables resources
engaged for an application to promptly grow and later shrink to track the actual
workload so cloud consumers are better able to satisfy customer demand without
taking fi nancial risks associated with accurately predicting future demand.

 • Rapid Implementation . Cloud consumers no longer need to procure, install, and
bring into service new compute capacity before offering new applications or
serving increased workloads. Instead, they can easily buy the necessary comput-
ing capacity “ off the shelf ” from cloud service providers, thereby simplifying
and shortening the service deployment cycle.

 • Increased Effectiveness . Cloud computing enables cloud consumers to focus
their scarce resources on building services to solve enterprise problems rather

RISKS OF CLOUD COMPUTING 15

than investing in deploying and maintaining computing infrastructure, thereby
increasing their organizational effectiveness.

 • Energy Effi ciency . Cloud service providers have the scale and infrastructure
necessary to enable effective sharing of compute, storage, networking, and data
center resources across a community of cloud consumers. This not only reduces
the total number of servers required compared with dedicated IT resources, but
also reduces the associated power, cooling, and fl oor space consumed. In essence,
intelligent sharing of cloud computing infrastructure enables higher resource
utilization of a smaller overall pool of resources compared with dedicated IT
resources for each individual cloud consumer.

1.8 RISKS OF CLOUD COMPUTING

 As cloud computing essentially outsources responsibility for critical IS/IT infrastructure
to a service provider, the cloud consumer gives up some control and is confronted with
a variety of new risks. These risks range from reduced operational control and visibility
(e.g., timing and control of some software upgrades) to changes in accountability (e.g.,
provider service level agreements) and myriad other concerns. This book considers only
the risks that service reliability and service availability of virtualized and cloud - based
solutions will fail to achieve performance levels the same as or better than those that
traditional deployment scenarios have achieved.

16

 Virtualization is the logical abstraction of physical assets, such as the hardware plat-
form, operating system (OS), storage devices, data stores, or network interfaces. Vir-
tualization was initially developed to improve resource utilization of mainframe
computers, and has evolved to become a common characteristic of cloud computing.
This chapter begins with a brief background of virtualization, then describes the char-
acteristics of virtualization and the lifecycle of a virtual machine (VM), and concludes
by reviewing popular use cases of virtualization technology.

2.1 BACKGROUND

 The notion of virtualization has been around for decades. Dr. Christopher Strachey from
Oxford University used the term virtualization in his book Time Sharing in Large Fast
Computers in the 1960s. Computer time sharing meant that multiple engineers could
share the computers and work on their software in parallel; this concept became known
as multiprogramming. In 1962, one of the fi rst supercomputers, the Atlas Computer,
was commissioned. One of the key features of the Atlas Computer was the supervisor,

2

VIRTUALIZATION

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

WHAT IS VIRTUALIZATION? 17

responsible for allocating system resources in support of multiprogramming. The Atlas
Computer also introduced the notion of virtual memory that is the separation of the
physical memory store from the programs accessing it. That supervisor is considered
an early OS. IBM quickly followed suit with the M44/44X project that coined the term
VM. Virtual memory and VM technologies enabled programs to run in parallel without
knowledge of the existence of the other executing programs. Virtualization was used
to partition large mainframe computers into multiple VMs, providing the ability for
multiple applications and processes to run in parallel, and thus better utilize hardware
resources. With the advent of less expensive computers and distributed computing, this
ability to maximize the utilization of hardware became less necessary.

 The proliferation of computers in the 1990s created another opportunity for virtu-
alization to improve resource utilization. VMware and others constructed virtualization
products to enable myriad applications running on many lightly utilized computers to
be consolidated onto a smaller number of servers. This server consolidation dramati-
cally reduced hardware - related operating expenses, including data center fl oor space,
cooling, and maintenance. By decoupling applications from the underlying hardware
resources that support them to enable effi cient resource sharing, virtualization technol-
ogy enables the cloud computing business model that is proliferating today.

2.2 WHAT IS VIRTUALIZATION?

 A simple analogy of virtualization is the picture - in - picture feature of some televisions
and set top boxes because it displays a small virtual television image on top of another
television image, thereby allowing both programs to play simultaneously. Computer
virtualization is like this in that several applications that would normally execute on
dedicated computer hardware (analogous to individual television channels) are actually
run on a single hardware platform that supports virtualization, thereby enabling multiple
applications to execute simultaneously.

 Virtualization can be implemented at various portions of the system architecture:

 • Network virtualization entails virtual IP management and segmentation.
 • Memory virtualization entails the aggregation of memory resources into a pool

of single memory and managing the memory on behalf of the multiple applica-
tions using it.

 • Storage virtualization provides a layer of abstraction for the physical storage of
data at the device level (referred to as block virtualization) or at the fi le level
(referred to as fi le virtualization). Block virtualization includes technologies such
as storage area network (SAN) and network attached storage (NAS) that can
effi ciently manage storage in a central location for multiple applications across
the network rather than requiring the applications to manage their own storage
on a physically attached device.

 • Processor virtualization enables a processor to be shared across multiple applica-
tion instances.

18 VIRTUALIZATION

 Virtualization decouples an application from the underlying physical hardware, includ-
ing CPU, networking, memory, and nonvolatile data storage or disk. Application soft-
ware experiences virtualization as a VM , which is defi ned by [OVF] as “ an encapsulation
of the virtual hardware, virtual disks, and the metadata associated with it. ” Figure 2.1
gives a simple depiction of a typical virtualized server. One of the key components of
virtualization is the hypervisor (also called the VM monitor (VMM); these terms will
be used interchangeably in this chapter), which supports the running of multiple OSs
concurrently on a single host computer. The hypervisor is responsible for managing
the applications ’ OSs (called the guest OSs) and their use of the system resources (e.g.,
CPU, memory, and storage). Virtual machines (VMs) are isolated instances of the
application software and Guest OS that run like a separate computer. It is the hypervi-
sor ’ s responsibility to support this isolation and manage multiple VM ’ s running on the
same host computer.

 A virtual appliance is a software image delivered as a complete software stack
installed on one or more VMs, managed as a unit. A virtual appliance is usually deliv-
ered as Open Virtualization Format (OVF) fi les. The purpose of virtual appliances is
to facilitate the deployment of applications. They often come with web interfaces to
simplify virtual appliance confi guration and installation.

2.2.1 Types of Hypervisors

 There are two types of hypervisors (pictured in Figure 2.2):

 • Type 1 . The hypervisor runs directly on the hardware (aka, bare metal) to control
the hardware and monitor the guest OSs, which are on a level above the hypervi-
sor. Type 1 represents the original implementation of the hypervisor.

Figure 2.1. Virtualizing Resources.

Application Application

A B

Guest OS A Guest OS BGuest OS A

Hypervisor

Host OS

Hardware

SERVER VIRTUALIZATION 19

 • Type 2 . The hypervisor runs on top of an existing OS (referred to as the host
OS) to monitor the guest OSs, which are running at a third level above the hard-
ware (above the host OS and hypervisor).

2.2.2 Virtualization and Emulation

 In the industry, the terms virtualization and emulation are sometimes used interchange-
ably, but they actually refer to two separate technologies. Emulation entails making one
system behave like another to enable software that was written to run on a particular
system to be able to run on a completely different system with the same interfaces and
produce the same results. Emulation does increase the fl exibility for software to move
to different hardware platforms, but it does usually have a signifi cant performance cost.
Virtualization provides a decoupling of an entity from its physical assets. VMs represent
isolated environments that are independent of the hardware they are running on. Some
virtualization technologies use emulation while others do not.

2.3 SERVER VIRTUALIZATION

 There are three types of server virtualization:

 • Full virtualization allows instances of software written for different OSs (referred
to as guest OSs) to run concurrently on a host computer. Neither the application
software nor the guest OS needs to be changed. Each VM is isolated from the
others and managed by a hypervisor or VMM, which provides emulated hard-
ware to the VMs so that application and OS software can seamlessly run on

Figure 2.2. Type 1 and Type 2 Hypervisors.

Application Application Application Application

A B

Guest OS A Guest OS B

A B

Guest OS A Guest OS BGuest OS A Guest OS A

Hypervisor Hypervisor

Host OS

Hardware Hardware

rosivrepyH2epyTrosivrepyH1epyT

20 VIRTUALIZATION

different virtualized hardware servers. Full virtualization provides the ability to
support multiple applications on multiple OSs on the same server. In addition
failovers or migrations can be performed onto servers on different generations
of hardware. Full virtualization can be realized with hardware emulation that
supports this separation of the hardware from the applications; however, this
emulation does result in a performance impact. To address this performance
impact, hardware - assisted virtualization is available to manage the isolation. This
emulation does incur a performance overhead that may be partially addressed by
hardware - assisted virtualization.

 • Hardware - assisted virtualization is similar to full virtualization but has the added
performance advantage of the processors being virtualization aware. The system
hardware interacts with the hypervisors and also allows the guest OSs to directly
process privileged instructions without going through the hypervisor.

 • Paravirtualization is similar to full virtualization in that it supports VMs on
multiple OSs; however, the guest OSs must be adapted to interface with the
hypervisor. Paravirtualization provides a closer tie between the guest OS and the
hypervisor. The benefi t is better performance since emulation is not required;
however, in order to realize this tighter interface between the guest OS and the
hypervisor, changes must be made to the guest OS to make the customized API
calls. Some products support paravirtualization with hardware assist to further
improve performance.

 • OS virtualization supports partitioning of the OS software into individual virtual
environments (sometimes referred to as containers), but they are limited to
running on the same host OS. OS virtualization provides the best performance
since native OS calls can be made by the guest OS. The simplicity is derived
from the requirement that the guest OS be the same OS as the host; however,
that is also its disadvantage. OS virtualization cannot support multiple OSs on
the same server; however, it can support hundreds of instances of the containers
on a single server.

2.3.1 Full Virtualization

 Full virtualization (depicted in Figure 2.3) uses a VM monitor (or hypervisor) to
manage the allocation of hardware resources for the VMs. No changes are required of
the guest OS. The hypervisor emulates the privileged operation and returns control to
the guest OS. The VMs contain the application software, as well as its OS (referred to
as the Guest OS). With full virtualization, each VM acts as a separate computer, isolated
from other VMs co - residing on that hardware. Since the hypervisor runs on bare metal,
the various Guest OSs can be different; this is unlike OS virtualization, which requires
the virtual environments to be based off an OS consistent with the host OS.

2.3.1.1 Hardware-Assisted Virtualization. Hardware - assisted virtualization
 provides optimizations using virtualization aware processors . Virtualization - aware pro-
cessors are those that know of the presence of the server virtualization stack and can

SERVER VIRTUALIZATION 21

therefore do things, such as interact directly with the hypervisors or dedicate hardware
space to VMs. The hypervisor still provides isolation and control of the VMs and allo-
cation of the system resources, but the guest OSs can process privileged instructions
without going through the hypervisor. Intel and AMD are two of the main providers
who support hardware - assisted virtualization for their processors.

2.3.2 Paravirtualization

 Paravirtualization (illustrated in Figure 2.4) has a slightly different approach from full
virtualization that is meant to improve performance and effi ciency. The hypervisor
actually multiplexes (or coordinates) all application access to the underlying host com-
puter resources. A hardware environment is not simulated; however, the guest OS is
executed in an isolated domain, as if running on a separate system. Guest OS software
needs to be specifi cally modifi ed to run in this environment with kernel mode drivers
and application programming interfaces to directly access the parts of the hardware

Figure 2.4. Paravirtualization.

App nApp 1

VM

App n

VM

App 1

Guest OSGuest OS

Hypervisor
Guest OS supports

�para-API� to
communicate with

HardwareHypervisor

Figure 2.3. Full Virtualization.

App1 App2 App3

VM VM VM

Guest OS1 Guest OS2 Guest OS3

Hypervisor

Hardware

22 VIRTUALIZATION

such as storage and memory. There are some products that support a combination of
paravirtualization (particularly for network and storage drivers) and hardware assist
that take the best of both for optimal performance.

2.3.3 OS Virtualization

 Operating system virtualization consists of a layer that runs on top of the host OS
providing a set of libraries to be used by the applications to isolate their use of the
hardware resources as shown in Figure 2.5 . Each application or application instance
can have its own fi le system, process table, network confi guration, and system libraries.
Each isolated instance is referred to as a virtual environment or a container . Since the
virtual environment or container concept is similar to that of a VM, for consistency,
the term “ virtual machine ” will be used in subsequent comparisons. The kernel provides
resource management features to limit the impact of one container ’ s activities on the
other containers. OS virtualization does not support OSs other than the host OS. Note
that Figure 2.5 indicates Guest OSs for the application; however, in the case of OS
virtualization, the Guest OSs must be the same OS as the host operation. The use of
the term Guest OS is to provide consistency with the other server virtualization types.
There is very little overhead associated with OS virtualization, since it uses the native
OS calls and does not need emulation.

2.3.4 Discussion

 The three primary types of server virtualization all provide a partitioning of applications
into their own VMs (or virtual environments) and use a hypervisor to perform as the
host OS that manages the hardware resources on behalf of the applications. In all three
types, there is no need to make any changes to the application software itself; the
application software will behave as if it had exclusive access to all of the underlying

Figure 2.5. Operating System Virtualization.

App nApp 1

VM

App n

VM

App 1

Guest OSGuest OS

OS Virtualization Layer

Host OS

Hardware

VM LIFECYCLE 23

hardware resources. The virtualization types differ in: complexity, ability to support
one or more OSs, performance, and level of access to hardware resources. Those dif-
ferences are summarized in Table 2.1 . Some examples of products that support the
virtualization type are also included in the table for reference.

2.4 VM LIFECYCLE

 While different virtualization technologies and different implementations support
somewhat different VM lifecycles, the Distributed Management Task Force [DSP1057]
recommends the following standard VM states:

 • Defi ned . The virtual system is defi ned (or confi gured) but is not enabled to
perform tasks, and thus does not consume any resources. The application soft-
ware is not running in this state.

 • Active. The virtual system is instantiated, and generally resources are enabled to
perform tasks. The application software is running or runnable in this state.

 • Paused . The virtual system and its virtual resources are disabled from perform-
ing tasks; however, the virtual system and its virtual resources are still instanti-
ated; resources remain allocated. The application software is not running in this
state and is considered temporarily inactive (or quiescent).

 • Suspended . The virtual system and its virtual resources are disabled from per-
forming tasks and the state of the virtual system and its virtual resources are
saved to nonvolatile data storage. Resources may be de - allocated. The state is
considered enabled but offl ine.

 The transitions between these states are illustrated in Figure 2.6 and defi ned as
follows:

 • Defi ne (indicated as “ create ” in Figure 2.6) entails the defi nition of a new VM.
 • Activate represents a transition from the defi ned state to the active state, entailing

the allocation of resources and the enabling of the system. Systems can transition
from paused or suspended to active with this transition.

 • Deactivate is the deallocation of resources and disabling of the virtual system
from activate , paused , or suspended to defi ned.

 • Pause entails the disabling of the virtual system moving from active to paused .
 • Suspend entails the disabling of the virtual system and the moving of the state

of the virtual system and its resources to nonvolatile data storage transitioning
from active or paused to suspended .

 • Shut down entails the notifi cation of the system that it needs to shut down. The
software then terminates its tasks and itself and then performs the same steps as
deactivate.

 • Reboot entails a soft boot transitioning from active , paused , or suspended to
active . The system remains instantiated and resources remain allocated.

 TABLE 2.1. Comparison of Server Virtualization Technologies

 noitazilautriV
 epyT

 suoenegoreteH
 troppuS SO

 SO
Modifi cation

needed
 ecnamrofreP

Impact

 erawdraH
Assist

 segatnavdasiD segatnavdA detroppuS
 elpmaxE

Products

 lluF
virtualization

 morf daehrevO oN seY
- noitalume

 htiw devorpmi
 detsissa - wh

virtualization

 MV lluF sey
portability

 ecnamrofreP
impact with
emulation
especially on
I/O; addressed

 detsissa - wh htiw
virtualization

 ,erawMV
KVM

 V - DMA

 lluf naht retsaF seY seY noitazilautrivaraP
virtualization;
can be enhanced

 tsissa wh htiw

 retteB seY
performance
than full
virtualization

 tseug seriuqeR
OS
modifi snoitac

 ,MVK ,neX
VMware,

 dna ,V - DMA
 V - repyH

 naht retsaF oN oN noitazilautriv SO
paravirtualization

 tseB oN
performance,
scalability

 a stroppus ylnO
 SO elgnis

 ,revreSV - xuniL
Sun LDOM,

 ZVnepO dna

24

VM LIFECYCLE 25

 Figure 2.6. Virtualized Machine Lifecycle State Transitions.

 Source : Distributed Management Task Force.

Initial State

(see System Virtualization Profile)

cr
ea

te

VS State: defined
EnabledState: Disabled

PowerState: Off-Soft

VS State: active
EnabledState: Enabled

PowerState: On

VS State: paused
EnabledState: Quiesce
PowerState: Sleep-Light

VS State: suspended
EnabledState: Enabled but Offline

PowerState: Sleep-Deep

de
st

ro
y

(see System Virtualization Profile)

Final State

activate

pause

su
sp

en
d

ac
tiv

at
e

/ r
eb

oo
t /

 r
es

et

de
ac

tiv
at

e
/ s

hu
td

ow
n

26 VIRTUALIZATION

 • Reset entails a hard boot from active , paused , or suspended to active . State
information saved during suspend may be lost with the hard boot.

 Per [DSP1057] , the virtual system transitions are defi ned in Table 2.2 .

2.4.1 VM Snapshot

 A snapshot is a mechanism to preserve a copy of the VM at a certain instant in time
and can include its memory contents, settings, and virtual disk state in order to restore
the VM and its resources to the point at which the snapshot was taken. Since the snap-
shot needs to capture state information, a pause option may be available to facilitate
the snapshot, but other options, such as copy - on - write, may be used to avoid the pause.
Once the snapshot has been successfully created, it may be immediately activated or
stored for later activation. Snapshots may be continuously built (at intervals) with
incremental changes from the last snapshot. A snapshot provides a means of recovering
from a failure in one version of the VM to a more stable (i.e., prefailure) version.
Snapshot recovery is useful when an update to a VM causes issues, such as system
instability. Since it represents an older version of the VM, it does not offer seamless
service recovery for the user in the event of a failure, since it will not have the most
recent state and session information. Snapshots can be created, applied, and destroyed
when no longer needed. Snapshots are often used for backup and data recovery
routines.

2.4.2 Cloning VMs

 Cloning is a mechanism for making a duplicate copy of a VM (referred to as the parent).
This is useful when multiple copies are needed of the same VM, such as setting up
equivalent test environments for a group of testers or students. The two types of clones
are:

 1. Once the VM has been copied from its parent, it is completely independent of
the parent VM. Any changes to the parent do not impact the clone. Some prod-
ucts refer to this as a full clone . Full clones perform better than linked clones
because they are independent, but they take longer to set up.

 2. Once the VM has been copied from its parent, it shares virtual disks with the
parent, and thus to function properly, the cloned VM must maintain access to
its parent. Some products refer to this as a linked clone .

 Cloning is the most effi cient way to make a copy of a VM (since it requires
less time than a full installation of a VM and its guest OS) that is activated to take
over for a failed VM, to increase the number of VMs to increase capacity, or to be
used in scenarios as described in Section 2.4.3 for service transition or disaster
recovery.

 TABLE 2.2. Virtual Machine Lifecycle Transitions

 metsyS lautriV fo noitavresbO
 tnemeriuqeR noitisnarT

 lautriV ” morF “
 etatS metsyS

 lautriV ” oT “
 etatS metsyS

 etatSdetseuqeR
Property and

 eulaV retemaraP
 :) (egnahCetatSrewoPtseuqeR

 eulaV ytreporP

 etats fo noitavresbO
 detroppus ton snoitisnart

 a/n a/n a/n 12 (Not
Applicable)

 a/n

 “ defi ne - moC_MIC oN lanoitpO)lanoitpO(”
 ecnatsni metsySretup

fieD “ .elbacilppa toN ” den

 “ activate fieD “ lanoitpO)lanoitpO(” ” desuaP “ ” den
 ” dednepsuS “

 ” evitcA “ 2 (Enabled))nO(2

 “ deactivate ” desuaP “ ” evitcA “ lanoitpO)lanoitpO(”
 ” dednepsuS “

fieD “ ” den 3 (Disabled))tfoS – ffO(8

 “ pause ” desuaP “ ” evitcA “ lanoitpO)lanoitpO(” 9 (Quiesce))thgiL – peelS(3
 “ suspend ” dednepsuS “ ” desuaP “ ” evitcA “ lanoitpO)lanoitpO(” 6 (Offl ine))peeD – peelS(4
 “ shut down ” desuaP “ ” evitcA “ lanoitpO)lanoitpO(”

 ” dednepsuS “
fieD “ ” den 4 (Shut Down))tfoS – ffO(8

 “ reboot ” desuaP “ ” evitcA “ lanoitpO)lanoitpO(”
 ” dednepsuS “

 ” evitcA “ 10 (Reboot))]tfoS – ffO[elcyC rewoP(5

 “ reset ” desuaP “ ” evitcA “ lanoitpO)lanoitpO(”
 ” dednepsuS “

 ” evitcA “ 11 (Reset))]draH – ffO[elcyC rewoP(9

 ro tnecer tuoba noitamrofnI
pending state transitions not
available

 a/n a/n lanoitpO 5 (No Change) a/n

27

28 VIRTUALIZATION

2.4.3 High Availability Mechanisms

 High availability mechanisms ensure that an application is continuously available to its
users. This generally entails redundant components and a heartbeat mechanism that
quickly detects failure of an active component and automatically recovers service to a
redundant component. In order to provide the level of fault detection, isolation, and
recovery required for high availability systems, many virtualization software vendors
include mechanisms for high availability, data synchronization, and the use of clusters.
A cluster is a group of tightly coupled computers that work as a whole to support con-
tinuous service availability even in the event of failures via automatic failover and load
balancing among members of the cluster. Clusters are used for higher availability or
scaling purposes. High availability mechanisms associated with virtualization are
responsible for monitoring and controlling VMs. If a failure is detected by the high
availability mechanism, then the VM will be restarted on the same or on a different
computer within its cluster depending on the nature of the failure; state information is
not generally preserved. Some enhancements to the high availability mechanisms do
provide data synchronization, including state information to ensure no loss of service
or data during the recovery. One such mechanism maintains a shadow copy of the
application in lockstep so that when a failure is detected by the high availability mecha-
nism, the shadow copy of the application can take over with no loss of data or disruption
for the user.

2.5 RELIABILITY AND AVAILABILITY RISKS OF VIRTUALIZATION

 Chapter 5 , “ Reliability Analysis of Virtualization, ” offers a traditional reliability analy-
sis of virtualization technology and its impact on high availability architectures. Chapter
 6 , “ Hardware Reliability, Virtualization and Service Availability, ” discusses the impact
of hardware failures on virtualized systems. Chapter 12 , “ Design for Reliability of
Virtualized Applications, ” explains how traditional system design for reliability can be
tailored for virtualized applications.

29

 Failures are inevitable in complex systems. Both native and virtualized systems are
subject to the same fundamental error and failure scenarios: hardware fails, latent
residual software defects are activated, electrical power is disrupted, and so on. Failures
and other impairments can impact the service delivered to users in three primary ways:

 • Service response times can degrade, producing service latency impairments.

 • Isolated service requests can fail to respond correctly within an acceptable time,
producing service reliability impairments.

 • Repeated service requests can fail, producing service availability impairments.

 Not only do virtualization technology and cloud computing introduce additional risks
that can impair service reliability and service availability, but measurement and account-
ability of impairments change subtly with cloud computing. This chapter explains the
concepts and details behind traditional metrics and accountabilities. Part II, “ Analysis, ”
will consider how these measurements change with cloud computing, and Part III,
 “ Recommendations, ” will consider how accountabilities and key quality indicators may
shift in cloud computing.

 3

SERVICE RELIABILITY AND
SERVICE AVAILABILITY

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

30 SERVICE RELIABILITY AND SERVICE AVAILABILITY

 This chapter begins by reviewing errors and failures, and then considers service
availability, service reliability, and service latency. A brief background on redundancy
and high availability is given. The chapter concludes with a discussion of the reliability
considerations of streaming media services.

 3.1 ERRORS AND FAILURES

 Residual software or hardware defects will occasionally be activated to produce errors,
and some errors will escalate and catastrophically impact system operation, thus causing
critical failures . If a system doesn ’ t recover from the initial failure promptly, then a
cascade of secondary failures may be triggered. These concepts are illustrated with an
ordinary pneumatic tire on an automobile or truck in Figure 3.1 (from [Bauer10]). A
nail on the road presents a hazard or fault that can be activated by driving over it,
thereby puncturing the tire to create a hole that leaks air (an error). Over time this air
leak will cause a repairable tire failure, commonly called a “ fl at tire. ” If the driver
doesn ’ t stop driving on a failed tire quickly enough, then the tire will become irrepa-
rably damaged. If the driver continues driving on a fl at tire even after the tire is
damaged, then the wheel rim will eventually be damaged.

 These failures may be minor like transmission of a single IP packet being corrupted
or arriving out of sequence, or they could be major like a software failure that crashes
a critical process and requires automatic or manual actions to recover service. Just as
there are a myriad of potential failure scenarios, there is a range of service impacts that
can accrue from those failures. The primary characteristic of the service impact of a
failure is the duration of service disruption. Very brief or one - shot transient events can
often be mitigated by simple mechanisms, like automatic retry/retransmission mecha-
nisms and the impact of these events may result in slightly longer service latency for
affected transactions. Longer service disruptions are likely to cause service to degrade
so much that the event is more visible to users. For example: if too many packets in a
streaming video playback are lost, then the user will see pixilation or other video
anomalies; if too many packets are lost from an audio program or call, then the user
will hear degraded audio or periods of silence. If degraded service persists for more
than a few seconds, then most users will deem the service or session to have failed,
and will abandon it, or, in many cases, users will retry these requests, thereby increasing
the load on the system. Figure 3.2 visualizes the failure escalation from transient condi-
tion to service unavailability for a canonical application. Failures with service impact
of tens or hundreds of milliseconds are often viewed as “ transient conditions ” which

 Figure 3.1. Fault Activation and Failures.

Fault
ActivationFault Failure Failure CascadeError

Nail Wheel rim
damage

Irreparable
tire damage

Repairable
flat tire

Hole that
leaks air

Driving
over nail

EIGHT-INGREDIENT FRAMEWORK 31

may be detectable by video and audio users but may not be detectable to web or data
users. As discussed in Section 3.4 , “ Service Reliability, ” depending on exactly how
service reliability metrics are defi ned and computed, transient conditions may trigger
impairments in service reliability metrics. Failures of several hundreds of milliseconds
to several seconds are likely to be noticeable to most end users, and thus will be per-
ceived as periods of degraded user service and should be a cause of concern to enter-
prises and service providers. Service disruptions of longer than a few seconds are likely
to be considered service outages and thus accrue downtime and impact service avail-
ability metrics.

 Note that users accessing an application via a wireless device may attribute service
impairments to their wireless access, especially if they are moving or accessing the
network during a particularly busy period or from a busy location. Thus, wireless users
may implicitly attribute some portion of application service failures to the wireless
access network rather than the application itself.

 3.2 EIGHT - INGREDIENT FRAMEWORK

 The eight - ingredient framework , or 8i, developed by Bell Labs [Rauscher06] is a useful
model for methodically considering all potential system vulnerabilities. The 8i frame-
work ingredients are: software, hardware, power, environment, payload, network,
human, and policy. Systems are built from hardware that hosts application and platform
 software . The hardware depends directly on electrical power and a suitable operating
 environment (e.g., acceptable temperature and humidity). Systems interact with users
and other systems via IP networks carrying application payloads structured according
to standard or proprietary protocols. The systems are supported by human maintenance
engineers or operators who follow documented or undocumented procedures and poli-
cies . Figure 3.3 graphically illustrates a typical system in the 8i context. Each of these
ingredients plays a crucial role; each ingredient has vulnerabilities and is subject to
faults, errors, and failures.

 Figure 3.2. Minimum Chargeable Service Disruption.

Failure Transient
Condition

Degraded
Service

Service
Unavailable

Often tens to
hundreds of
milliseconds

Maximum
acceptable service
disruption―Often

several seconds

1 second 10 seconds100 millisecondsNominal
logarithmic

timeline Service Availability
Metrics Impacted

32 SERVICE RELIABILITY AND SERVICE AVAILABILITY

 Now let ’ s look at the eight ingredients in detail:

 • Hardware . Systems are built of physical objects made from electronic and physi-
cal components, cables, connectors, fasteners, and so on. Hardware is prone to
well - known physical failure mechanisms and equipment suppliers are expected
to deliver hardware with acceptably low hardware failure rates throughout the
equipment ’ s designed service life. Delivering hardware with acceptably low
failure rates is achieved by following well - known hardware design for reliability
and manufacturing quality practices. Hardware should be designed to give soft-
ware visibility, and ideally automatic notifi cation, of hardware failures so system
software can promptly report the failure and activate automatic recovery mecha-
nisms. Operationally, the system must rapidly detect hardware failures and isolate
them to the appropriate Field Replaceable Unit (FRU) so that maintenance engi-
neers can promptly replace the failed FRU to minimize simplex exposure time
and restore the system to full operational status. Hardware failures are considered
in Chapter 6 , “ Hardware Reliability, Virtualization and Service Availability. ”

 • Software . Software enables the system ’ s hardware to deliver valuable services
to users. Software is prone to programming defects, as well as specifi cation,
architecture, design, and integration fl aws that cause the system to behave incor-
rectly in certain situations. Software failures are considered in Chapter 5 , “ Reli-
ability Analysis of Virtualization. ”

 The remaining six ingredients are external to the system itself, but are crucial in actual
system operation:

 • Power . Appropriate AC or DC power and proper electrical grounding is required
for electronic systems to function. This category includes overvoltage and voltage
spikes caused by lightening, power crosses, and short circuits for systems that
are externally powered. Battery - powered systems are vulnerable to somewhat
different hazards such as battery exhaustion and wear out.

 • Environment . Hardware systems are sensitive to ambient environmental condi-
tions, including: temperature, relative humidity, elevation (because air density is

 Figure 3.3. Eight - Ingredient (“ 8i ”) Framework.

System

Software

Hardware

Environment

Power

Human

PolicyApplication
Payload

IP Network

EIGHT-INGREDIENT FRAMEWORK 33

critical for cooling), dust, and corrosive gases (e.g., the air pollution that causes
acid rain). The system ’ s physical design should assure that the system operates
properly when maintained within its specifi ed environmental parameters. The
system must be properly located and installed so that there is suffi cient physical
clearance for maintenance engineers to work on and around the equipment to
manipulate cabling and hardware units. The environment must be physically
secured to prevent deliberate or accidental damage to the system, including
physical security attacks and theft of hardware.

 • Network . Systems fi t into a networked solution context in which IP packets are
passed to and from other systems. The “ network ” ingredient transports the appli-
cation ’ s “ payload ” ingredient. Crucial facilities (like optical transport fi bers and
copper cables) and elements (like routers and Ethernet switches, themselves
subject to 8i vulnerabilities) can fail, thus disrupting prompt and reliable delivery
of application payloads.

 • Payload . Systems interact with users and other systems via messages or streams
of application data passed via IP network facilities and infrastructure. As many
of the elements that a particular system communicates with are likely to be dif-
ferent types of systems, often from other equipment suppliers, it is essential that
network elements be tolerant of messages or data streams that might be somewhat
different than expected. The information passed may be different because other
elements interpret protocol specifi cations differently, or because they have
enhanced the protocol in a novel way.

 • Human . Human beings use, operate, and maintain systems. Humans who perform
routine and emergency maintenance on systems present a notable risk because
wrong actions (or inaction) can disable or damage the system. Wrong actions by
humans can occur for many reasons including:
 � documented procedure is wrong, absent, or unavailable;
 � man - machine interface was poorly designed, thereby making proper execution

of procedures more confusing, awkward, or error - prone;
 � human was not properly trained; and
 � human makes a mistake because they are under stress, rushed, confused or

tired.

 • Policy . To successfully operate a complex system, it is essential to have business
policies and processes that organize workfl ows and govern operations and behav-
ior. Operational policies are required for all of the elements and interoperation
with other systems and end users, as well as for employees and customers. These
policies often include adopting industry standards, regulatory compliance strate-
gies, maintenance and repair strategies, service level agreements, and so on.
Enterprises defi ne specifi c policies, such as standards compliance and “ profi les, ”
that defi ne discretionary values for protocols that permit multiple options that
must be supported by system suppliers. Several policies impact system failure
rates, including:
 � policies for deploying critical software patches and updates;
 � policies for skills and training of maintenance engineers and other staff;

34 SERVICE RELIABILITY AND SERVICE AVAILABILITY

 � security policies that assure networks and systems are hardened against cyber
security attacks.

 Several policies impact outage recovery times, including:
 � emergency outage recovery policies;
 � outage escalation policies; and
 � technical support agreements with hardware and software suppliers.

 Readers will note that the formal 8i model conspicuously omitted the data ingredient
that represents all the confi guration, application, and user information that is required
to assure proper service delivery. While the 8i inventors felt data could simply be
lumped with software, the authors of this book consider application, confi guration, and
user data to be an independent and co - equal ingredient with software and hardware.
Another pragmatic, if somewhat inelegant, extension of the 8i model is to explicitly
consider force majeure or disaster events. The importance of considering force majeure
or disaster events separately from ordinary ingredient failures is that disaster events
can impact multiple ingredients (e.g., an earthquake might impact commercial power,
the structural integrity of the data center environment and external IP networking infra-
structure) and simultaneously overwhelm ordinary redundancy mechanisms. As a
result, disaster events are typically mitigated via distinct business continuity and disas-
ter recovery plans. This book will refer to the 8i model overlaid with a data ingredient
and disaster event risk as “ 8i + 2d. ” This “ 8i + 2d ” model is depicted in Figure 3.4 .

 3.3 SERVICE AVAILABILITY

 When a failure event persists for more than a few seconds, it is likely to impact not
only isolated user service requests, but also the user - initiated retries of those failed
requests. Brief service impact events may cause individual transactions or sessions to
fail, thus prompting the user to retry the transaction or session (e.g., redialing a dropped

 Figure 3.4. Eight - Ingredient Plus Data Plus Disaster (8i + 2d) Model.

System

Software

Hardware

Environment

Power

Human

PolicyApplication
Payload

IP Network

Data

Force majeure and disaster events

SERVICE AVAILABILITY 35

call); if the fi rst (and perhaps second) retried attempt fails because service is still
impacted, then the event will often be considered a service outage, and thus impact
service availability metrics. When service is impacted so long that retried user opera-
tions fail — thereby causing users to abandon their efforts to access the service — the
service is generally deemed unavailable.

 3.3.1 Service Availability Metric

 Service availability can be quantifi ed via the simple Equation 3.1 as service uptime
divided by the sum of service uptime and service downtime.

 Availability
Uptime

Uptime Downtime
=

+
.

 Equation 3.1. Basic Availability Formula

 Note that the values of Uptime and Downtime used to calculate availability can be
either predicted via mathematical modeling (e.g., an architecture based Markov avail-
ability model) or via actual fi eld measurements (e.g., from outage trouble tickets or via
service probes). Few enterprises explicitly calculate uptime since it would require a
constant or at least periodic monitoring and validation of system health; most enter-
prises carefully track service downtime. Equation 3.2 calculates availability based on
service downtime, as well as the total time the target system(s) was expected to be in
service (i.e., the minutes during the measurement period that systems were expected to
be online so planned downtime is excluded).

 Availability
TotalInServiceTime Downtime

TotalInServiceTime
=

−
..

 Equation 3.2. Practical System Availability Formula

 TotalInServiceTime is the sum of minutes per month (or other reporting period) that
the systems in the population were expected to be operational; Downtime is the minutes
of service unavailability prorated by the percentage of capacity or functionality impacted
during the outage.

 IT Infrastructure Library (ITIL) offers the simple formula of Equation 3.3 for
computing availability:

 Availability
AgreedServiceTime Downtime

AgreedServiceTim
(%) =

−
ee

×100%.

 Equation 3.3. Standard Availability Formula

 Note that ITIL [ITILv3SD] explicitly uses “ AgreedServiceTime ” to highlight that that
many systems have scheduled maintenance periods during which service can be offl ine
for maintenance. Thus, AgreedServiceTime explicitly excludes planned downtime from

36 SERVICE RELIABILITY AND SERVICE AVAILABILITY

consideration in availability calculations; planned downtime is discussed in Section
 3.3.7 .

 While the simple ITIL defi nition of availability may be adequate for many enter-
prise applications, the telecommunications industry has evolved far more sophisticated
service availability measurements, which are documented in the TL 9000 Measure-
ments Handbook. This book will use these richer TL 9000 service availability measure-
ment concepts. Service availability in the telecommunications industry is formally
defi ned by [TL9000] as: “ the ability of a unit to be in a state ready to perform a required
function at a given instant in time or for any period within a given time interval, assum-
ing that the external resources, if required, are provided. ” The unit against which service
availability is traditionally normalized is the individual system 1 or network element. 2

 3.3.2 MTBF and MTTR

 Many readers will be familiar with Equation 3.4 , which uses mean time between failure
(MTBF) and mean time to repair (MTTR) to estimate availability.

 Availability
MTBF

MTBF MTTR
=

+
.

 Equation 3.4. Estimation of System Availability from MTBF and MTTR

 This simple equation is easily understood by considering Figure 3.5 . MTTR is the time
to return a system to service and MTBF is the time the system is expected to be up or
online before it fails (again). This means that the system will nominally be online and

 Figure 3.5. MTBF and MTTR.

Up… Uptime Up…

Down Down
Repair RepairFailureFailure

MTTR MTBF

 2 Network element is formally defi ned by [TL9000] as: “ A system device, entity or node including all relevant
hardware and/or software components located at one location. The Network Element (NE) must include all
components required to perform the primary function of its applicable product category. If multiple FRUs,
devices, and/or software components are needed for the NE to provide its product category ’ s primary func-
tion, then none of these individual components can be considered an NE by themselves. The total collection
of all these components is considered a single NE. Note: While an NE may be comprised of power supplies,
CPU, peripheral cards, operating system and application software to perform a primary function, no indi-
vidual item can be considered an NE in its own right. ”

 1 System is formally defi ned by [TL9000] as: “ A collection of hardware and/or software items located at one
or more physical locations where all of the items are required for proper operation. No single item can func-
tion by itself. ”

SERVICE AVAILABILITY 37

up for MTBF hours before failing, and MTTR hours will nominally be required to
repair the system and bring it back online. Thus, Equation 3.4 is equivalent to the simple
availability formula of Equation 3.1 where MTBF is used as an estimate of Uptime and
MTTR is used as an estimate of Downtime.

 While most readers will have seen predicted MTBF values offered by suppliers
and standard MTTR values from industry standards, suppliers, and service providers,
they may not realize that large service providers and enterprises with large populations
of systems in service will often compute actual MTTR and MTBF based on actual
performance of deployed equipment, operational policies, and staff. As with mileage
estimates for automobiles “ your mileage may vary , ” but standard MTBF and MTTR
values — like standard mileage estimates — are a useful baseline when evaluating systems
and planning deployments.

 The simpler Equation 3.4 is not generally appropriate for systems that include any
redundancy for two related reasons:

 • Redundancy Should Enable Service to Be Restored Far Faster Than the Time It
Takes to Repair the Failed Element . Operationally, it should be much faster to
switch service to a redundant element (e.g., in seconds) rather than to repair the
failed element, which could take hours. Very fast recovery times contribute to a
very small mean time to restore service (MTTRS), which can boost service
availability.

 • Redundant Elements Are Arranged So That Single Failures Will Not Cause
Service Disruption . For example, various RAID confi gurations enable individual
hard disk failures to be masked from application software, and failure of redun-
dant fans or power supplies should not impact service. On systems with redun-
dancy, only a fraction of the failures that will eventually require maintenance
actions (MTBF) will cause service impact, and hence be considered critical, thus
improving the mean time between critical failure s (MTBCF).

 3.3.3 Service and Network Element Impact Outages

 Complex and redundant systems can generally experience outages that either directly
impact user service, or outages that only cause a loss of redundancy or other impact
that does not directly impact user service. Events impacting user service are called
 service impact outages and are defi ned by [TL9000] as: a failure where end - user service
is directly impacted. Outages that impact primary functionality (what ITIL calls vital
business function or VBF) of a network element, up to and including user service
impact, are called network element impact outages and are defi ned by [TL9000] as: a
 failure where a certain portion of a network element functionality/capability is lost/
down/out of service for a specifi ed period of time .

 The distinction between service impact outages and network element impact
outages is especially important for systems with high availability mechanisms to
measure the period that a failed component is unavailable and that the system is operat-
ing with no available redundancy, and hence the system is at risk of a prolonged service
impact outage if another failure occurs before the network element impact outage has

38 SERVICE RELIABILITY AND SERVICE AVAILABILITY

been resolved, so the system is restored to normal redundancy. Figure 3.6 illustrates
this by highlighting both service impact and network element impact outages. Although
the network element impact outage when B1 is unavailable might be hours or longer,
since user service is rapidly recovered to element B2, the service impact outage period
for users is far shorter than the period that B1 is unavailable. Note that until B1 is
repaired and brought up, service is nonredundant or simplex exposed, so a second
failure cannot be automatically recovered and thus would produce an extended service
outage. Thus, well - run enterprises will repair failed components promptly to minimize
the simplex exposure time of critical services.

 3.3.4 Partial Outages

 Larger systems supporting applications with rich functionality for varied user com-
munities and IS/IT maintenance engineers are often far more likely to experience a
partial functionality or partial capacity outage than they are to be totally and completely
down. For example, one of several software processes can fail and directly impact either
the users served by that process or the functionality served by that process. If that failure
impacts some or the entire primary functionality offered to some or all of the system
offered for an unacceptably long duration, then the event is considered an outage.
However, if the event impacts some but not all users or some but not all primary func-
tionality, then the event is a partial outage and the outage should be prorated by the
percentage of capacity or functionality lost. To properly consider partial outages, the
telecommunications industry and sophisticated enterprises use prorated partial outage
downtime formulas, like Equation 3.5 .

 Availability
TotalInServiceTime TotalProratedDowntime

Total
=

−
IInServiceTime

.

 Equation 3.5. Recommended Service Availability Formula

 Figure 3.6. Service and Network Element Impact Outages of Redundant Systems.

B1 up B1 upB1 down

Service up on B2

Critical
Failure

Service Impact Outage after critical failure
of B1 until user service is restored on B2

Network Element Impact Outage after
critical failure of B1 until full redundancy
is restored when B1 is brought back into service

SERVICE AVAILABILITY 39

 TotalInServiceTime is the sum of minutes per month (or other reporting period) that
the systems in the population were expected to be operational; TotalProratedDowntime
is the minutes of service unavailability prorated by the percentage of capacity or func-
tionality impacted during the outage.

 As an example of prorating partial capacity loss outages, consider a digital sub-
scriber loop access module (DSLAM) that offers high - speed Internet service over
copper wires to subscribers. Figure 3.7 illustrates a sample solution: xDSL routers in
subscribers ’ homes connect via copper wires to the DSLAM, which aggregates the
traffi c onto high - capacity transport network connections to the Internet service pro-
vider ’ s (ISP) broadband remote access server (BRAS), which eventually connects to
the public Internet. For engineering and commercial reasons, DSLAMs are generally
implemented with many individual line cards, each of which services many dozen
subscribers by directly terminating the copper wires that connect to the xDSL routers
in subscribers ’ homes. If a single line card fails completely, then all subscribers served
by that line card will be without Internet service until the line card is replaced; subscrib-
ers served by other line cards in the DSLAM will not be impacted. If the DSLAM was
provisioned to serve 1000 subscribers in the 31 - day month of January, then the Tota-
lInServiceTime would be 1000 subscribers times 31 days in January times 24 hours per
day times 60 minutes per hour for a total of 44,640,000 subscriber - minutes of in - service
time. If the DSLAM experienced a single line card failure in the month which impacted
100 subscribers for 4 hours, then the TotalProratedDowntime is 100 subscribers times
4 hours of downtime times 60 minutes per hour for a total of 24,000 impacted subscriber -
 minutes for the month. Monthly availability for this sample DSLAM can then be
computed via Equation 3.6 .

 Availability =
−

=
44 640 000 24 000

44 640 000

44 616 000

44 640

, , ,

, ,

, ,

, ,0000
99 9462= . %.

 Equation 3.6. Sample Partial Outage Calculation

 Figure 3.7. Sample DSL Solution.

DSL
Access
Modem

Public
Internet

ISP’s
Network

Broadband
Remote
Access
Server

Transport
Network

xDSL Router in
Subscriber’s

Home

xDSL
Subscriber

Lines

40 SERVICE RELIABILITY AND SERVICE AVAILABILITY

 Readers can easily see how this calculation can be effi ciently scaled up to cover many
thousands of DSLAMs in a typical service provider ’ s network:

 • TotalInServiceTime aggregates the nominal subscriber - minutes (or subscriber -
 seconds) of service that were expected during the measurement period (i.e.,
excluding planned maintenance periods);

 • TotalProratedDowntime aggregates the subscriber - minutes (or subscriber -
 seconds) of service impact in the measurement period.

 3.3.5 Availability Ratings

 Service availability ratings are commonly quantifi ed as the number of nine ’ s or by
availability system type; “ fi ve 9 ’ s ” or “ high availability ” is a common availability
expectation for critical systems. Table 3.1 below gives the maximum service downtime
for common availability ratings, per [GR2841] .

 Mature organizations will recognize that different enterprise information services
and applications require different availability ratings. While these ratings will vary
somewhat based on organizational needs and customer expectations, the standard

 TABLE 3.1. Service Availability and Downtime Ratings, per [GR2841]

 Number
of 9 ’ s

 Service
Availability

(%)
 System
Type

 Annualized
Down

Minutes
 Quarterly

Down Minutes

 Monthly
Down

Minutes
 Practical
Meaning

 1 90 Unmanaged 52,596.00 13,149.00 4,383.00 Down 5
weeks
per year

 2 99 Managed 5,259.60 1,314.90 438.30 Down 4
days
per year

 3 99.9 Well
managed

 525.96 131.49 43.83 Down 9
hours
per year

 4 99.99 Fault
tolerant

 52.60 13.15 4.38 Down 1
hour
per year

 5 99.999 High
availability

 5.26 1.31 0.44 Down 5
minutes
per year

 6 99.9999 Very high
availability

 0.53 0.13 0.04 Down 30
seconds
per year

 7 99.99999 Ultra
availability

 0.05 0.01 – Down 3
seconds
per year

SERVICE AVAILABILITY 41

criticality defi nitions from the U.S. Federal Aviation Administration ’ s National Airspace
System ’ s reliability handbook are probably fairly typical:

 • CRITICAL (service availability rating of 99.999%) “ Loss of this capability
would raise to an unacceptable level, the risk associated with providing safe and
effi cient [system] operations ” [FAA - HDBK - 006A] .

 • ESSENTIAL (service availability rating of 99.9%) “ Loss of this capability
would signifi cantly raise the risk associated with providing safe and effi cient
[system] operations ” [FAA - HDBK - 006A] .

 • ROUTINE (service availability rating of 99%) “ Loss of this capability would
have a minor impact on the risk associated with providing safe and effi cient
[system] operations ” [FAA - HDBK - 006A] .

 There is also a “ safety critical ” category with service availability rating of seven 9s for
life - threatening risks and services where “ loss would present an unacceptable safety
hazard during the transition to reduced capacity operations ” [FAA - HDBK - 006A] .
Reliability and availability of “ safety critical ” services are beyond the scope of this
book.

 3.3.6 Outage Attributability

 It is often convenient to consider attributability of the events that impact service avail-
ability and service reliability. The telecommunications industry factors outage attribut-
ability into three broad and generally applicable categories: product - attributable events,
customer - or service - provider attributable events, and external - attributable events.
These three orthogonal categories are defi ned as follows:

 • Product - attributed outages are defi ned in [TL9000] as “ an outage primarily
triggered by
 a) system design, hardware, software, components or other parts of the system,
 b) scheduled outage necessitated by the design of the system,
 c) support activities performed or prescribed by [a supplier] including documen-

tation, training, engineering, ordering, installation, maintenance, technical
assistance, software or hardware change actions, etc.,

 d) procedural error caused by the [supplier],
 e) the system failing to provide the necessary information to conduct a conclu-

sive root cause determination, or
 f) one or more of the above. ”

 • Service provider - attributable (or customer - attributable) outages are defi ned by
 [TL9000] as “ an outage that is primarily attributable to the customer ’ s [service
provider ’ s] equipment or support activities triggered by
 a) customer ’ s [service provider] procedural errors,
 b) offi ce environment, for example power, grounding, temperature, humidity, or

security problems, or
 c) one or more of the above.

42 SERVICE RELIABILITY AND SERVICE AVAILABILITY

 Outages are also considered customer [service provider] attributable if the cus-
tomer [service provider] refuses or neglects to provide access to the necessary
information for the [supplier] to conduct root cause determination . ”

 • External - attributable outages are defi ned in [TL9000] as “ outages caused by
natural disasters such as tornadoes or fl oods, and outages caused by third parties
not associated with the [service provider] or the [supplier] such as commercial
power failures, third - party contractors not working on behalf of the [supplier] or
[service provider]. ”

 Outages are also often attributed to root cause categories such as hardware, software
and procedural or human. While hardware - and software - attributable outages are fairly
straightforward, many readers may not be familiar with the technical defi nition of
procedural error. [TL9000] offers the following defi nition of procedural error :

 “ An error that is the direct result of human intervention or error. Contributing
factors can include but are not limited to

 a) deviations from accepted practices or documentation,
 b) inadequate training,
 c) unclear, incorrect, or out - of - date documentation,
 d) inadequate or unclear displays, messages, or signals,
 e) inadequate or unclear hardware labeling,
 f) miscommunication,
 g) non - standard confi gurations,
 h) insuffi cient supervision or control, or
 i) user characteristics such as mental attention, physical health, physical

fatigue, mental health, and substance abuse.

 Examples of a Procedural Error include but are not limited to
 a) removing the wrong fuse or circuit pack,
 b) not taking proper precautions to protect equipment, such as shorting

out power, not wearing ESD strap, etc.,
 c) unauthorized work,
 d) not following Methods of Procedures (MOPs)
 e) not following the steps of the documentation,
 f) using the wrong documentation,
 g) using incorrect or outdated documentation,
 h) insuffi cient documentation,
 i) translation errors,
 j) user panic response to problems,
 k) entering incorrect commands,
 l) entering a command without understanding the impact, or
 m) inappropriate response to a Network Element alarm. ”

 3.3.7 Planned or Scheduled Downtime

 Information - and computer - based systems occasionally require planned or preventive
maintenance to: upgrade or update software, fi rmware, or hardware; grow or alter the

SERVICE RELIABILITY 43

system ’ s hardware confi guration; physically move the equipment or alter its network
confi guration; and so on. [TL9000] defi nes scheduled outage as follows:

 “ Results from a scheduled or planned maintenance, installation, or manual
initialization. This includes such activities as parameter loads, software/ fi rm-
ware changes, and NE growth/update, cutover (for example, switch replace-
ment or absorption), hardware or software growth, preventive maintenance,
routine or scheduled diagnostics, data table change, software patching or
updates, software generic upgrade, program backup, and data backup. ”

 Typically enterprises and service providers will plan scheduled outages to occur during
so - called maintenance windows (i.e., when system usage will be light) to minimize any
user impact. Maintenance windows are traditionally scheduled in the middle of the
night where the equipment is physically located, such as between midnight and 4 a.m.
local time. As global businesses now operate in several time zones across a region,
continent, or the planet, it has become more challenging to pick low usage periods.
While maintenance engineers will often require time for preparation work, followed by
time to execute all of the steps of the Method of Procedure, and additional time for
postwork activities, any period of user service impact should be minimal. For example,
while it will invariably take time to download a security or software patch and run the
installation program, there should be no service impact during that time. Planned
service impact is possible when the system software is gracefully restarted to activate
the updated software. Ideally, traffi c will have been drained from the system prior to
the graceful restart, such as by redirecting user service to an alternate system or by
instructing all users to log off prior to the planned restart. Some systems even support
 “ rolling upgrade ” strategies in which components are restarted individually so that
traffi c (perhaps at lower capacity) can continuously be served as portions of the system
are gracefully upgraded and restarted.

 Periods of service unavailability due to scheduled outages are generally excluded
from service availability metrics provided that the duration of service impact is not
longer than expected (e.g., the canonical service disruption time expected for successful
execution of the particular Method of Procedure). Should the period of service impact
be signifi cantly longer than expected (e.g., due to a failed procedure execution, or a
hardware or software failure occurring during execution of the procedure when the
system was simplex exposed), then the excess service downtime may be recorded as a
service outage and impact service availability metrics. Planned activities are considered
in this book under the IT Service Management category of Service Transition as
described in Section 4.5.4 , “ Service Transition. ”

 3.4 SERVICE RELIABILITY

 The term reliability is sometimes used in the industry as a superset of service avail-
ability and various other topics, such as Microsoft ’ s statement “ the reliability [service
management function] ensures that service capacity, service availability, service conti-
nuity, data integrity and confi dentiality are aligned to the business needs in a cost

44 SERVICE RELIABILITY AND SERVICE AVAILABILITY

effective manner ” [Microsoft]. Rather than adopting a very broad and general defi nition
of reliability, this book will use the narrow defi nition of reliability given by TL 9000.

 3.4.1 Service Reliability Metrics

 “ Reliability ” is defi ned as “ the ability of an item to perform a required function under
stated conditions for a stated time period ” [TL9000] . Service reliability characterizes
the ability of a system to provide acceptable service, which means correct or accurate
service delivered within an acceptable time. Service reliability is essentially the portion
of service requests that are successfully served (i.e., are not defective) within the
maximum acceptable service latency. Service reliability can be expressed positively in
 “ number of 9s ” style via the formula in Equation 3.7 .

 Service Reliability
Successful Responses

Total Requests
= ×

()
1000%.

 Equation 3.7. Service Reliability Formula

 Since most services are very reliable, it is more convenient to focus on the much smaller
number of unreliable service events or service defects. These service defects are con-
veniently normalized as defective transactions or operations per million attempts.
Defects per million (DPM) attempts can be computed via Equation 3.8 .

DPM
Total Requests Successful Responses

Total Requests
=

−
×

()
,1 0000 000

1 000 000

,

, , .= ×
Unsuccessful Requests

Total Requests

 Equation 3.8. DPM Formula

 Equation 3.9 converts DPM to service reliability probability, and Equation 3.10 con-
verts service reliability to DPM.

 Service Reliability
DPM

=
−

×
(, ,)

, ,
%.

1 000 000

1 000 000
100

 Equation 3.9. Converting DPM to Service Reliability

 DPM Service Reliability= − ×(%) , , .100 1 000 000

 Equation 3.10. Converting Service Reliability to DPM

 For example, if users attempt to send 123,459,789 instant messages to online subscrib-
ers via a particular messaging service during a measurement period, and all but 4321
messages are successfully received by the intended recipient within the maximum
acceptable service latency, then the DPM in this measurement period is computed via
Equation 3.11 .

SERVICE RELIABILITY 45

 DPM = × = × =
4 321

123 456 789
1 000 000 0 0000350 1 000 000 35

,

, ,
, , . , , .

 Equation 3.11. Sample DPM Calculation

 3.4.2 Defective Transactions

 “ Defective service transaction ” is defi ned by [TL9000] as “ a transaction where there
was a failure to meet one or more internal and/or defi ned customer requirements con-
cerning the performance of the service. ” Most application protocols provide return
codes that can be used to classify nonsuccessful requests into application failures
(nominally attributable to the application supplier, service provider, or enterprise) and
request failures (nominally attributable to the user or user equipment). For example,
consider the return codes from the IETF ’ s session initiation protocol (SIP), commonly
used for voice over IP and video over IP applications. Failures nominally attributed to
software, hardware, or network infrastructure failures include:

 • Server failure responses, like 500 Server Internal Error (“ The server
encountered an unexpected condition that prevented it from fulfi lling the request ”
 [RFC3261]) or 503 Service Unavailable (“ The server is temporarily unable
to process the request due to a temporary overloading or maintenance of the
server ” [RFC3261]).

 • Replies with service latency of greater than the maximum acceptable service
latency requirement , as discussed in Section 3.5 , “ Service Latency. ”

 • Request time outs — requests with no response that clients time out after the
maximum number of retries.

 Note that persistent server failure responses, unacceptably long response latency, or
request time out will cause a system to be deemed unavailable.

 Proper application operation and business policies may cause some requests to fail,
but those failures are not defective service transactions. Failed transactions nominally
attributed to defective user requests include:

 • Invalid request , such as 404 Not Found (“ The server has defi nitive information
that the user does not exist at the domain specifi ed in the Request - URI ”
 [RFC3261]), or attempting to log on to a service with incorrect or unauthorized
credentials.

 • Improperly formatted request , such as 400 Bad Request (“ The request could
not be understood due to malformed syntax ” [RFC3261]).

 • Business policies , such as 403 Forbidden (“ The server understood the request,
but is refusing to fulfi ll it ” [RFC3261]), or trying to withdraw too much money
from an automated teller machine.

 • Application architecture, confi guration, or deployment , such as 501 Not
Implemented (“ The server does not support the functionality required to fulfi ll
the request ” [RFC3261]).

46 SERVICE RELIABILITY AND SERVICE AVAILABILITY

 Note that some operations might erroneously be failed (e.g., 403 Forbidden) because
of a provisioning or confi guration error. In effect, the application is correctly processing
faulty confi guration data resulting in service being unavailable to some — or even all —
 users. Application software bugs could also cause an incorrect error code to be returned,
so one must always be cautious when interpreting error codes.

 Thus, application responses should be carefully reviewed to decide exactly which
return codes indicate defective transactions that should impact service metrics, and
which are considered correct application operation.

 3.5 SERVICE LATENCY

 Most network - based services execute some sort of transactions on behalf of client users.
For example, web applications return web pages in response to HTTP GET requests
(and update pages in response to HTTP PUT requests), telecommunications networks
establish calls in response to user requests, gaming servers respond to user inputs, media
servers stream content based on user requests, and so on. Transaction latency directly
impacts the quality of experience of end users; according to [Linden] , 500 millisecond
increases in service latency causes a 20% traffi c reduction for Google.com , and a 100
millisecond increase in service latency causes a 1% reduction in sales for Amazon.com .

 The latency between the time an application receives a request (e.g. an HTTP GET)
and the time the application sends the response (e.g., a web page) will inevitably vary
for reasons, including:

 • Network Bandwidth . As all web users know, web pages load slower over lower
bandwidth (aka, “ speed ”) network connections; DSL is better than dial - up, and
fi ber to the home is better than DSL. Likewise, insuffi cient network bandwidth
between resources in the cloud — as well as insuffi cient access bandwidth to
users — causes service latency to increase.

 • Caching . Responses served from cached memory are typically much faster than
requests that require one or more disk reads.

 • Disk Geometry . Unlike random access memory (RAM), in which it takes the
same amount of time to access any memory location, disk storage inherently has
nonuniform data access times because of the need to move the disk head to the
physical disk location to access stored data. Disk heads move in two independent
directions:
 � rotationally as the disk storage platters spin; and
 � track - to - track, as the disk heads seek between concentric data storage tracks.

 The physical layout of fi le systems and databases are often optimized to mini-
mize incremental latency for rotational and track - to - track latency to access
likely data, but inevitably some data operations will require more time than
others due to physical layout of data on the disk.

 • Disk Fragmentation . Disk fragmentation causes data to be stored in noncontigu-
ous disk blocks. As reading noncontiguous disk blocks requires time - consuming

SERVICE LATENCY 47

disk seeks between disk reads or writes, additional latency is introduced when
operating on fragmented portions of fi les.

 • Request Queuing . Queuing is a common engineering technique to improve oper-
ational effi ciency by permitting requests that arrive at the instant that the system
is busy processing another request to be queued for service rather than simply
rejecting the requests outright. Assuming that the system is engineered properly,
request queuing enables the offered load to be served promptly (although not
instantly) without having to deploy system hardware for the busiest traffi c burst
(e.g., the busiest millisecond). In essence, request queuing enables one to trade
(expensive) system hardware capacity for increased service latency.

 • Variations in Request Arrival Rates . There is inevitably some randomness in the
arrival rates of service requests, and this moment to moment variation is super-
imposed on daily, weekly, and seasonal usage patterns. When offered load is
higher, request queues will be deeper and hence queuing delays will be greater.

 • Unanticipated Usage and Traffi c Patterns . Database and software architectures
are confi gured and optimized for certain usage scenarios and traffi c mixes, such
as cache sizes, confi guration parameters, and similar optimizations. As usage and
traffi c patterns vary signifi cantly from nominal expectations, the confi gured set-
tings may no longer be optimal, and thus performance will degrade from nominal.

 • Network Congestion or Latency . Bursts or spikes in network activity can cause
the latency for IP packets traversing a network to increase.

 Figure 3.8 illustrates the service latency distribution for a sample service. In this
example, the median (50th percentile) latency is 130 milliseconds, meaning that half
of the responses are faster than 130 milliseconds, and half are slower than 130 milli-
seconds. The distribution tail is naturally much longer above 130 milliseconds because
while there are physical limits to the minimum response latency, delays can accu-
mulate for myriad reasons. For this sample solution, the 95th percentile latency is 230

 Figure 3.8. Transaction Latency Distribution for Sample Service.

Distribution of Response Times

0

25

50

75

100

0 200 400 600 800 1000 1200 1400 1600

Latency in Milliseconds

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n
 (

%
)

50th percentile at 130msec

99.5th percentile at 320msec

99th percentile at 290msec

95th percentile at 230msec

Outlier at 1400mSec

48 SERVICE RELIABILITY AND SERVICE AVAILABILITY

milliseconds (less than twice the 50th percentile latency), and the 99.5th percentile is
320 milliseconds (less than three times the 50th percentile latency). The longest service
latency in this modest sample data set was 1400 milliseconds.

 The statistical distribution will vary somewhat from application to application
based on system architecture and other factors. Several latency data sets for different
transactions or operations can be captured, and one can test to determine what math-
ematical distribution gives an acceptable model of service latency for the target solu-
tion. Having assumed a normal (or other) mathematical distribution, one can estimate
the latency of any arbitrary point on the distribution with the appropriate mathematical
formula based on two reference points, such as the 50th and 95th percentile service
latency requirements or measured values.

 A common service quality rule of thumb is that the 95th percentile latency should
be no more than about twice the 50th percentile latency. Figure 3.9 shows how the data
set of Figure 3.8 demonstrates compliance to a maximum 50th percentile service
latency requirement of 200 milliseconds along with a 95th percentile latency target of
twice that, or 400 milliseconds. Since two points can characterize the parameters of a
particular mathematical distribution, two points can be used to specify the service
latency performance requirement of a system. Figure 3.9 overlays 200 millisecond 50th
percentile and 400 millisecond 95th percentile service latency requirements onto the
sample data set, and the reader can instantly see that the actual performance is substan-
tially better than these requirements. As the shape of a system ’ s response latency dis-
tribution should remain relatively consistent, one can see how 50th percentile and 95th
percentile requirements can easily be evaluated for arbitrary latency data sets, thus often
making 2 point requirements an effi cient specifi cation technique for service latency.

 While the 50th and 95th percentile latency requirements should be specifi ed to be
within the range of service latency that is acceptable to users, there is inevitably some
latency value that is unacceptably slow and above which the user will consider the
request a failure, even if it does eventually complete successfully. This is easily illus-
trated with web servers. Web browsers include a “ cancel ” or “ stop ” button that enables

 Figure 3.9. Requirements Overlaid on Service Latency Distribution for Sample Solution.

Framing Latency Requirements

0

25

50

75

100

0 100 200 300 400 500

Latency in Milliseconds

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n
 (

%
)

50th percentile latency
requirement of 200msec

95th percentile latency
requirement of 400msec

SERVICE LATENCY 49

frustrated users to abandon an operation (e.g., web page retrieval or update) and a
 “ reload ” button to retry the request. Undoubtedly, all readers have stopped a painfully
slow web page load from an apparently nonresponsive server, and hit “ reload ” in the
hope that retrying the request will be more successful. This same behavior applies to
other service requests, such as telephone call attempts, where most users will abandon
a call attempt that doesn ’ t return audible ring back within 4 seconds of the last digit
being dialed or “ send/call ” being pressed. While the actual maximum time an individual
user will wait for a particular web page to load or telephone call to go through or some
particular application transaction to complete will vary, the best practice is to set a
maximum acceptable service latency requirement. In principle, even a successful
response that takes longer than the maximum acceptable service latency time will be
deemed unsuccessful by the user, presumably because they have abandoned the request
(e.g., hit “ cancel ” on their browser or ended the call) in frustration. Figure 3.10 overlays
a maximum acceptable service latency of 4 seconds (4000 milliseconds) onto the
service latency requirements of Figure 3.9 . Note that the maximum service latency in
this example is 20 times the 50th percentile requirement and 10 times the 95th percentile
requirement. The maximum service latency should only rarely be exceeded, and those
exceptions are generally captured as impairments to service reliability metrics, which
were discussed in Section 3.4 , “ Service Reliability. ” Note that the spread between the
50th percentile, 95th percentile, and maximum acceptable service latency is highly
application dependent. For example, while it may be acceptable for a web - based appli-
cation to occasionally take 10 or 20 times longer to respond to an individual request
than typical, it is not acceptable for the latency of real - time gaming, voice calling, or
video streaming to suddenly increase by an order of magnitude or more. As readers
know from personal experience, snappier, more responsive services are more appeal-
ing, and thus are more likely to be satisfactory to users. The relationship between
service latency and user satisfaction is application dependent, and different applications
will have different service latency targets, and different maximum acceptable latency
expectations.

 Figure 3.10. Maximum Acceptable Service Latency.

Maximum Acceptable Service Latency

0

25

50

75

100

0 1000 2000 3000 4000 5000
Service Latency (milliseconds)

D
is

tr
ib

u
ti

o
n

 (
%

)

Cumulative Percentage

Latency Requirements

Maximum Acceptable Latency

Maximum acceptable service
latency is perhaps 10−20

times greater than 50th percentile
service latency requirement. Any

response received with greater
service latency than this maximum
acceptable latency value will be

deemed unsuccessful.

50 SERVICE RELIABILITY AND SERVICE AVAILABILITY

 Note that different transaction types may have signifi cantly different service latency
profi les, and thus should be tracked separately against separate requirements. For
example, transactions that query or retrieve data are typically faster than operations that
update data and establishing a session or call takes longer than terminating a session
or disconnecting a call. Thus, best practice is to specify two maximum service latency
points (e.g., 50th percentile and 95th percentile) and absolute maximum acceptable
service latency for each major type of transaction (e.g., session/connection establish-
ment, query, update, and session/connection termination).

 3.6 REDUNDANCY AND HIGH AVAILABILITY

 Critical hardware, software and other failures are inevitable. Figure 3.11 illustrates the
service impact of a critical failure of standalone (nonredundant) system B1:

 1. Initially system B1 is “ up ” and service is available to users (i.e., “ up ”)

 2. A critical failure occurs (e.g., hardware failure or software crash), and service
is unavailable (i.e., “ down ”) to users while maintenance engineers troubleshoot
and repair system B1

 3. When B1 is repaired and returned to service, service is once more available
(“ up ”).

 Thus, a critical failure of a standalone system with no internal redundancy has typical
outage duration of minutes or hours for a maintenance engineer to troubleshoot the
problem and repair the system. Enterprises will often purchase hardware maintenance
contracts to guarantee a maximum response time to assure that spare hardware is
promptly available to minimize outage duration for hardware - attributed failures.

 Unplanned outage durations of hours or several minutes are unacceptable for criti-
cal services, so critical systems will be deployed with redundancy and high availability
middleware so that critical failures can be mitigated via rapid automatic failure detec-
tion and recovery. High availability middleware will automatically detect a critical
failure, identify the failed unit and shift traffi c to a redundant element so that service
is rapidly recovered. Assuming a critical system is built from two redundant units
B1 and B2, Figure 3.12 illustrates how redundancy and high availability mechanisms

 Figure 3.11. Downtime of Simplex Systems.

B1 upB1 down—
Service down/unavailable

Service is restored when
troubleshooting and repair of

failure is completed

FailureB1 up

REDUNDANCY AND HIGH AVAILABILITY 51

mitigate service downtime. Unit B1 is serving some or all of the active traffi c when it
experiences a critical failure. High availability software and mechanisms detect the
failure of B1 and redirect traffi c previously served by B1 to redundant element B2;
after successfully switching over B1 ’ s traffi c to B2, service is once again available for
all users. The critical failure of element B1 must still debugged and repaired, but user
service has been restored much, much faster than it would take to troubleshoot and
repair the failure of B1. After B1 is repaired, the high availability mechanism (e.g.,
load balancer) can then shift traffi c back onto element B1, or B2 can continue as the
active or primary system and repaired B1 can serve as standby or alternate system.

 3.6.1 Redundancy

 Redundancy in traditional computer - based systems is most often implemented at three
levels:

 1. Software Process . Protected mode operating systems like Linux make software
processes excellent recoverable units because they can explicitly be terminated
and restarted without impacting any other processes.

 2. Field Replaceable Unit (FRU) Hardware . As the primary unit of hardware
repair, it is common to use the FRU as the primary unit of hardware redun-
dancy as well. For instance, compute blade FRUs are convenient units of
redundancy, especially if blade FRUs can be removed, replaced (or simply
reseated to diagnose hardware versus software failures), and restarted while
system is operational.

 3. Network Element . Some services are provided across a cluster or pool of indi-
vidual network elements (e.g., individual rack mount server instances) with a
mechanism to balance or direct the traffi c load across the pool of individual
systems. For example, any operational domain name server (DNS) network

 Figure 3.12. Downtime of Redundant Systems.

B1 up B1 upB1 down

Service up on B2

Brief service disruption of
users originally served by B1

while high availability
mechanism recovers users’

service to B2

B1 comes back “up” when
troubleshooting and repair of
critical failure is completed

Critical
Failure

High availability
software rapidly

shifts traffic from
failed B1

component to
operational B2

component

Traffic
restored to B1

after it is
repaired and
returned to

service

52 SERVICE RELIABILITY AND SERVICE AVAILABILITY

element can respond to a DNS query request. Deploying more DNS servers on
a network increases the probability that at least one DNS server will be available
to serve user requests.

 Multiple instances of the same thread type are often implemented within processes to
improve throughput and performance, especially on multicore processors. While these
threads are technically redundant, they are not generally useful for robust recovery
because failures are rarely contained to a single thread within a software process.

 Redundant hardware, such as a pool of processors or an array of storage devices,
may also be implemented on a single FRU (or even integrated circuit) for cost, density,
or other reasons. While the system may continue to operate in a “ limp along ” mode
after one element in the pool has failed, highly available systems are designed to permit
each FRU to be replaced while the system is in service and to then restore service onto
the replaced FRU gracefully without requiring a system reboot. Thus, highly available
systems should support FRU - level redundancy to maintain service while a FRU is being
replaced, reinitialized and gracefully re - accepting service once it has been successfully
recovered and re - activated.

 As the principle of redundancy can be applied from simple components like fans
in a fan tray, to complex systems like data centers in disaster recovery scenarios, to
completely different branches of engineering like cables in a suspension bridge, the
terminology varies somewhat across industries. Fundamentally there are two common
logical redundancy arrangements: load sharing and active - standby.

 1. Load Shared . In load - shared redundancy arrangements, all operational units are
actively serving users. By convention, “ N ” refers to the number of units required
to carry the full engineered service load of the system, and “ K ” refers to the
number of redundant units confi gured, and hence this confi guration is often
called “ N + K load sharing. ” The smallest load shared confi guration has a single
unit capable of carrying the full engineered load (N = 1) and a single redundant
unit (K = 1); this minimal “ 1 + 1 load sharing ” arrangement is typically referred
to as “ active – active. ” By keeping the “ redundant ” unit active, there is a lower
probability of undetected or “ silent ” failure of the redundant unit in active –
 active confi gurations compared with active – standby arrangements. For example,
commercial airplanes are designed with N + 1 engine redundancy so that if one
engine fails on takeoff, the airplane can successfully takeoff, maneuver, and
land. Another version of “ N + K ” exists in which a “ K ” unit is put into service
only when one of the “ N ” units fails. At that point, it assumes the traffi c previ-
ously being handled by the failed “ N ” unit. Since the “ K ” unit is not kept active
when not in use, the recovery time is slightly longer than the load - shared model;
however, it has the advantage of requiring less hardware than the active - standby
model in most cases.

 2. Active – Standby . As the name suggests, one of the units is actively serving users
at a time, and the redundant unit is in a standby state not actively serving users.
In high availability arrangements, the redundant unit is typically powered on
with platform and application software booted to a predefi ned state. Depending
on the application and software platform architecture, the redundant unit may

REDUNDANCY AND HIGH AVAILABILITY 53

be ready to take over for a failed active unit in seconds or longer. The terms
 “ hot, ” “ warm, ” and “ cold ” are often loosely used to characterize the readiness
of the application software on the standby unit. While the precise interpretation
of hot, warm, and cold failover varies between applications and industries,
common interpretations of these terms are:
 • “ cold standby ” application software (and perhaps operating system) needs to

be started on a processor to recover service after failure of active unit;
 • “ warm standby ” application software is running on standby unit, but volatile

data are periodically (rather than continuously) synchronized with active so
time is required to rebuild latest system state before standby unit can recover
service after failure of active; and

 • “ hot standby ” application is running on standby unit and volatile data are kept
current so standby unit can recover service rapidly after failure of active.

 Since standby units are not actively delivering service, there is a risk that a hardware
or software failure has occurred on the standby but has not yet been detected by the
monitor software that runs when the unit is in standby. Hot and warm standby systems
should periodically execute diagnostic self - test software to verify that hardware and
software remains in full working order. The best practice is to routinely switchover
service to standby units while the active unit is fully functional (and during a mainte-
nance period in case issues arise) to assure that standby units remain fully operational
and ready to recover service from a failure of an active unit. This should expose any
previously undetected hardware or software problems when the previously active unit
is fully operational to recover service if necessary.

 Hybrid redundancy arrangements are sometimes used for applications with titles
like primary/secondary or master/backup, in which some functions (e.g., queries) might
be distributed across any operational element but other operations (e.g., updates) are
only served by the “ primary ” or “ master ” instance. If the primary or master fails, then
an automatic selection process designates one of the secondary or backup instances to
be the new primary or master.

 3.6.2 High Availability

 Hardware and software failures are inevitable. Highly available systems are designed
so that no single failure causes unacceptable service disruption. To accomplish this,
systems must be designed to detect, isolate, and recover from failures very rapidly.
Traditionally, this means that failure detection, containment and isolation, and recovery
must be both automatic and highly reliable, and hardware redundancy must be engi-
neered into the system to rapidly recover from hardware failures.

 A basic robustness strategy for a highly available system is illustrated in Figure
 3.13 . Consider each step in Figure 3.13 separately:

 1. Failure . Hardware, software, or other failures will inevitably occur.

 2. Automatic Failure Detection . Modern systems are designed to detect failures
via myriad mechanisms ranging from direct hardware mechanisms, like parity

54 SERVICE RELIABILITY AND SERVICE AVAILABILITY

checks, to direct software mechanisms like return codes or expiration of time
outs, to environmental sensors like temperature or moisture sensors, to sophis-
ticated indirect mechanisms, like integrity audits and throughput monitors.
Highly available systems will have several tiers of failure detection so that if
one detection tier misses the initial failure event, then another tier will catch it
sometime later.

 3. Automatic Failure Containment and Isolation . The system must contain the
failure extent so that the failure does not cascade to affect more users or services
than necessary. The system must then correctly diagnose or isolate the failure
to the appropriate recoverable module so that proper recovery action can be
initiated. Fault isolation should be as fast as possible so that failure recovery
action can be promptly activated to shorten service outage, but not so hasty as
to incorrectly isolate the failure and activate a wrong recovery action. In addi-
tion to prolonging the outage event, activating the wrong recovery mechanism
(e.g., switching over or restarting the wrong software module) may unnecessar-
ily affect end users who were not impacted by the failure event itself. The situ-
ation when a failure is not isolated to the correct recoverable or repairable
module is called a “ diagnostic failure. ”

 4. Automatic Failure Recovery . After isolating the failure to the proper recover-
able module, highly available systems will then automatically activate a recov-
ery action, such as switching service to a redundant module.

 5. Service Restored . System returns to normal operation when service is restored
onto the redundant module.

 6. Full Redundancy Restored . Replacement of the failed hardware module, repair
of failed software module, or other action to correct the primary failure is then
completed promptly to restore the system to fully protected (i.e., redundant)
status.

 In high availability systems, failure detection, isolation, and recovery occur auto-
matically, and the duration of impact to service should be less than the maxi-
mum acceptable service disruption latency. Typical high availability systems will

 Figure 3.13. Simplifi ed View of High Availability.

Automatic
Failure

Detection

Automatic
Failure

Containment
And Isolation

Automatic
Failure

Recovery
Failure

Service Restored

1. Hardware or
software failure

occurs

2. System
detects
failure

3. System
contains and

isolates
failure to

faulty entity

4. System
recovers from
failure (e.g.,
switching to
redundant

entity)

5. System
returns to

normal
operation

6. Failed unit
is repaired
and system
returns to

fully
redundant
operation

REDUNDANCY AND HIGH AVAILABILITY 55

automatically detect, isolate, and recover from failures in seconds, but some special -
 purpose systems like optical transmission equipment will detect, isolate, and recover
from failures in milliseconds.

 If a failure is not automatically detected by the system, then a so - called “ silent
failure ” situation will exist in which service is not delivered but recovery actions are
not activated because neither the system nor the human maintenance engineers are
aware of the failure. Silent failures can occur on either active elements (e.g., a server
that is nominally available but is not actually accepting new user requests) or redundant/
standby elements (e.g., an underinfl ated or fl at spare tire may be lurking in an automo-
bile trunk for months or years before being detected). Depending on system architecture
and the specifi c failure, these silent failures may directly impact users (e.g., a server is
down, but the operations team doesn ’ t know it) or they may not immediately impact
users but put the system into a vulnerable/simplex state (e.g., spare tire is fl at, but the
driver doesn ’ t know it). Implementing multiple tiers of failure detection (e.g., guard
timers, keepalives, throughput monitors, and so on) and routine switchover/execution
of standby/redundant units is the best practice for mitigating the risk of silent failure.
For example, if a software process fails in a way that does not trigger an explicit failure
indication, like a failure return code or processor exception, then the failure should be
detected via failure of a periodic keep alive/heartbeat mechanism, or via unchang-
ing throughput monitor values, or via other secondary/alternate failure detection
mechanisms.

 Figure 3.14 illustrates these high availability principles in the context of canonical
enterprise application architecture. The example application is built around a load -
 shared pool of server instances S1, S2, and S3 that offer users access to data stored in

 Figure 3.14. High Availability Example.

Internet

Security
Appliance

Server
S1

Server
S2

Server
S3

Security
Appliance

Standby Load
Balancer LB2

Storage
Appliance

Storage
Appliance

1. Critical hardware or software failure
occurs which disables server S1

2. Active load balancer “LB1” detects failure
of S1

3. Failure is contained to S1 because no
state, and so on, is shared with S2 and S3

4. Active load balancer redirects user traffic
from (failed) S1 to S2 and S3

5. S1 is repaired and normal service
restored for users

Active Load
Balancer LB1

56 SERVICE RELIABILITY AND SERVICE AVAILABILITY

a highly available storage array subject to some business rules. An active – standby pair
of load balancers distributes user traffi c across the available server instances, and a pair
of security appliances protects the elements from external attack. The example scenario
illustrated in Figure 3.14 is as follows:

 1. Critical failure occurs on server instance S1; assume that this prevents S1 from
responding to requests from end users on the Internet.

 2. Active load balancer LB1 observes that server S1 has stopped responding to
user requests. Since server instances S2 and S3 remain operational, the load
balancer deduces that S1 has failed and raises an alarm to the element manage-
ment system (EMS).

 3. Server application instances were explicitly designed to be independent with no
shared information, so failure of S1 does not impact the ability of S2 or S3 to
deliver service to their users.

 4. Active load balancer stops directing any traffi c to S1 and distributes all traffi c
to S2 and S3. Service is restored for all users.

 5. Server S1 is repaired (e.g., by replacing failed hardware or repairing and restart-
ing failed software) and made available. Active load balancer detects recovery
of S1 and resumes distributing traffi c to S1. Service is restored to full redun-
dancy, and LB1 clears the alarm it raised to the EMS.

 [Hamilton] offered the following practical test for the effectiveness of a system ’ s high
availability architecture and implementation: “ is the operations team willing and able
to bring down any server in the service at any time without draining the work load
fi rst? ”

 3.7 HIGH AVAILABILITY AND DISASTER RECOVERY

 While high availability systems are designed to withstand any single failure, occasion-
ally, force majeure or disaster events cause multiple systems to fail simultaneously. For
example, a fi re, fl ood, or roof collapse in a data center is likely to impact both the
primary and redundant instances of multiple critical components. As these events over-
whelm high availability mechanisms, an additional tier of business continuity planning
and disaster recovery is often deployed to protect critical services. Disaster recovery
strategies for critical services generally rely on both geographically separated redundant
data center facilities and disaster recovery processes and mechanisms to promptly
recover critical services to alternate data centers following a disaster.

 Disaster recovery planning focuses on two key objectives: recovery time objective
(RTO) and recovery point objective (RPO). Figure 3.15 illustrates these objectives in
the context of a canonical disaster recovery fl ow. A system is operating normally when
a disaster event occurs, such as an earthquake, fi re, building collapse, or other cata-
strophic event; this catastrophic event causes service to become unavailable. Typically,
enterprise staff will fi rst see to the safety of all staff and visitors at the site and then

HIGH AVAILABILITY AND DISASTER RECOVERY 57

assess the damage. If the damage is light, then the enterprise may opt to promptly
recover service on the equipment in the impacted data center; if the damage is more
substantial, then the enterprise will declare a disaster and activate their disaster recovery
plan. The disaster recovery plan will typically involve recovering service to equipment
in a geographically distant data center that was not impacted by the disaster event.

 The disaster RTO is the target time to recover service onto the geographically
remote site from the time the disaster recovery plan was activated via formal disaster
declaration, to the time application service is recovered to the remote site. Note that as
data centers often support many end users, and each user will recover service to the
georedundant site at a somewhat different time, one typically deems the recovery to be
complete when some percentage of impacted users are fully recovered to the redundant
site, such as when 90% of users impacted by the disaster are able to successfully access
service from an alternate data center. Disaster RTOs often range from a few hours to a
few days.

 The RPO is the most recent point in time at which system state can be restored
onto the recovery site. Typically, the geographically redundant system is recovered from
the last data backup, meaning that any data changes or updates that completed after the
last data backup will be lost. The RPO is the most recent point in time that system state
can be recovered following a disaster. For example, with daily backups, the maximum
disaster RPO should be 24 hours. As all data changes executed in less than the RPO
time before a disaster are expected to be lost when service is restored following a
disaster, enterprises should carefully set their RPO and engineer their systems accord-
ingly. Operationally, data changes executed less than the RPO period before a disaster
are likely to be lost and will either have to be reentered or accepted by the business as
a permanent data loss. Daily data backups may offer an unacceptably long RPO for
some enterprise data, so information may be replicated to a remote site to shorten RPO.
Highly critical data can even be mirrored to assure that the data is securely stored on
multiple sites before completing a transaction, thus assuring that no critical data will
be lost due to a disaster. Data replication and related technologies can shorten RPOs to
hours or minutes, and data mirroring or synchronous write technologies can shorten
RPOs to seconds or less.

 Figure 3.15. Disaster Recovery Objectives.

Normal
Operation

Outage
Recovered
OperationDisaster

Disaster
Declared

RTORPO

Last
Backup

Recovery Time Objective (RTO) is
the target time between when
disaster is declared and when

service is recovered on backup site

Recovery Point Objective (RPO) is the most recent point in
time to which system state can be recovered onto backup site

58 SERVICE RELIABILITY AND SERVICE AVAILABILITY

 The RTO and RPO metrics are useful in the context of recovering from critical
failures, as well as recovering from disasters, although the RTO and RPO for critical
failures are generally seconds or minutes while the RTO and RPO for disaster events
are often hours or days.

 Disaster recovery and geographic redundancy is considered in detail in Chapter 9 .

 3.8 STREAMING SERVICES

 Transaction - style services nominally return a single response per request, and thus
service latency and service reliability is relatively straightforward to measure by con-
sidering the linkage between service requests and their corresponding responses.
Streaming services, like voice and video calling and conferencing and voice playback,
are fundamentally different from transaction style services because a single logical
request (e.g., request to play a video or make a call) can result in a huge number of
data packets being sent in response. These differences result in somewhat different
service quality, reliability, and availability risks.

 This section begins by differentiating the logical data plane, which carries stream-
ing content from the logical control plane, which controls the fl ow of content. Streaming
service quality metrics are then discussed. A key difference between transaction -
 oriented control traffi c and streaming data traffi c is the expectation of isochrony; iso-
chronal data is covered in Section 3.8.3 , followed by a discussion of streaming quality
impairments.

 3.8.1 Control and Data Planes

 Streaming services like voice or video have two fundamental components: session
control and user data.

 • Session control covers operations to create, manipulate, and terminate streaming
service sessions. IETF ’ s Session Initiation Protocol (SIP) is a protocol used to
control voice calls and video sessions.

 • User data carry digitally encoded audio/voice or video content to the user, typi-
cally via IETF ’ s real - time protocol (RTP).

 It is often convenient to view control and data as two logical planes of network traffi c;
a small number of largely asynchronous control plane messages “ control ” a much larger
volume of synchronous data plane traffi c. Control plane traffi c is generally transaction
oriented so that each request to establish a session produces a fi nite and well - defi ned
protocol exchange. While the session setup requires only a handful of control plane
messages to be exchanged, the audio and/or video content of the call/session will typi-
cally be carried in dozens of RTP packets per second containing digitized audio and/
or video for the duration of the session.

STREAMING SERVICES 59

 3.8.2 Service Quality Metrics

 While it is theoretically possible to measure the service reliability of a media stream
(e.g., the number of packets per million sent that are not correctly received within the
maximum acceptable latency), that measure is not particularly useful because digital
decoders are designed to mask occasional lost or late packets via concealment algo-
rithms (e.g., replaying the last audio packet received or continuing to display the last
video image). Instead of traditional service reliability metrics, service quality of stream-
ing sessions is often characterized via several of the following metrics:

 • Mean Opinion Score (MOS) . The quantitative 1 (worst) thru 5 (best) mean
opinion score is a standard way (e.g., [P.800], [BT.500]) to characterize multi-
media quality of service. Standard defi nitions of MOS values are given in Table
 3.2 .

 • Session setup latency is the time it takes to establish a new session (e.g., voice
or video call) or start rendering requested contents (e.g., begin playing a prere-
corded video or switch to a different television channel).

 • Impacted or Severely Impacted Seconds or Units of Streaming Service . Different
streaming services have somewhat different units of impact. While video impact
may be measured in impacted frames, audio (and perhaps online gaming) impact
is measured in milliseconds or seconds of impact or loss of data.

 • Lip Sync . For streams where both audio and video are provided, it is impor-
tant for visual images of moving mouths and other sound + producing actions
to remain in sync with the audio sound track. If the so - called lip sync is off by
more than about 50 milliseconds, then users ’ quality of experience will be
impacted.

 • Session Retention or Retainability . Captures the probability that the stream
remains operational until normal termination (e.g., reaching the end of the pre-
recorded material or deliberate termination of a call by one of the participants).

 TABLE 3.2. Mean Opinion Scores

 Mean Opinion
Score

 [P.800]
Quality Rating

 [BT.500]
Impairment Rating

 [P.800] “ Effort Required
to Understand the Meaning

of Sentences ”

 5 Excellent Imperceptible Complete relaxation
possible; no effort required

 4 Good Perceptible, but
not annoying

 Attention necessary; no
appreciable effort required

 3 Fair Slightly annoying Moderate effort required
 2 Poor Annoying Considerable effort required
 1 Bad Very annoying No meaning understood with

any feasible effort

60 SERVICE RELIABILITY AND SERVICE AVAILABILITY

 3.8.3 Isochronal Data

 The dictionary [Webster] defi nes isochronal as “ uniform in time; having equal duration;
recurring at regular intervals. ” Streaming data for real - time communications is inher-
ently isochronal to assure that the audio and/or video content that was encoded by the
sender ’ s device is promptly transported across the network and available for timely
decoding into an analog representation for the receiving party to enjoy. While modern
encoding standards for audio and video streams aggressively compress redundant data
(e.g., suppress “ silent ” audio periods and unchanging video images to reduce network
usage), the data remains largely isochronal.

 If the communications is not isochronal, then the receiver has two undesirable
options:

 1. Vary the pace of rendering the data to track with the arrival rate, so voice/video
may be compressed (e.g., higher pitch audio) when traffi c is received faster and
slower (e.g., lower audio pitch) when congestion or other factors delays network
transmission

 2. Maintain an isochronal rendering schedule, and if appropriate data isn ’ t avail-
able when required then attempt to conceal the missing data (e.g., by fi lling the
 “ dead ” spot by replaying previous data) to minimize the user service impact.

 After all, the speakers and displays that render digitized audio and video content are
fundamentally isochronal: every few milliseconds, they must be presented with audio
or video data to render, or the listener will hear silence and the viewer will see a frozen
image, jerky video, pixilation, or other visual impairments. To assure the highest quality
of rendered audio and video streams, modern systems maintain an isochronal rendering
schedule and receiving systems use de - jitter buffers to compensate for inevitable packet
by packet variations in transmission latency across IP networks.

 3.8.4 Latency Expectations

 Streaming sessions are fundamentally both unidirectional and noninteractive (e.g.,
playing prerecorded audio or video content) or bidirectional, interactive, or conversa-
tional (e.g., a voice or video call). Noninteractive streams have modest bearer latency
expectations: the content should begin rendering fairly promptly, but few users will
notice if rendered content actually took hundreds of milliseconds or seconds to be
streamed from the server, traverse the network, decompress, and be rendered. Interac-
tive or conversational audio and video streams have strict latency expectations so that
conversations can maintain a familiar and comfortable dialog between participants that
is similar to traditional face - to - face communications.

 The International Telecommunications Union (ITU) modeled the service quality
perception of users to varying mouth - to - ear delays (i.e., the latency from the time
one party speaks into a telephone and the time the other party hears their words);
the results are shown in Figure 3.16 . When mouth - to - ear latency is below 200 milli-
seconds, users are very satisfi ed; when latency doubles to 400 milliseconds, some users

STREAMING SERVICES 61

are dissatisfi ed; as latency increases, further more users become dissatisfi ed. This result
should track with readers ’ personal experience with older wireless phones: when mouth -
 to - ear latency gets too long, people inadvertently speak over each other because the
natural conversational rhythms that they are accustomed to do not work when latency
increases past a certain point. Forcing users to explicitly alter their conversational style
to use a higher latency communications solution decreases their satisfaction.

 Thus, minimizing one - way latency is very important for interactive or conversa-
tional streaming services, so encoders, de - jitter buffers, decoders, and other elements
in the path of bearer data must be designed and tuned for low latency.

 3.8.5 Streaming Quality Impairments

 In addition to end - to - end latency, the quality of streaming services is impacted by the
following:

 • Packet Loss . IP networks occasionally lose packets, and thus, IP protocols,
including those carrying audio and video streams across the Internet, must be
prepared to conceal lost or late IP packets. Two common lost packet concealment
strategies are to replay previous data or to fi ll with benign content like silence.

 • Jitter is the variation in packet arrival rates. Receivers typically implement de -
 jitter buffers that introduce latency to give packets more time to traverse the IP
network and be resequenced, thereby increasing the probability that data packets
will be available at the moment that the decoder needs them to render media
to the user. While larger de - jitter buffers — meaning greater latency nominally

 Figure 3.16. ITU - T G.114 Bearer Delay Guideline.

 Source: International Telecommunications Union [ITU - T G.114].

Users
very satisfied

Users
satisfied

Soure users
dissatisfied

0 100

100

90

80

70

E
-m

od
el

 r
at

in
g

R

60

50
200 300

Mouth-to-ear-delay/ms

400 500 G.114_F01

Many users
dissatisfied

Nearly all
users

dissatisfied

62 SERVICE RELIABILITY AND SERVICE AVAILABILITY

consumed by de - jitter buffer to collect and resequence late IP packets — reduces
the risk of dropping late packets, it directly increases end - to - end media latency.
Less jitter permits smaller de - jitter buffers to be used without reducing service
quality, thus shorting end - to - end media latency.

 3.9 RELIABILITY AND AVAILABILITY RISKS OF CLOUD COMPUTING

 Chapter 4 , “ Analyzing Cloud Reliability and Availability, ” considers how the essential
and common characteristics of cloud computing introduce new risks to service reli-
ability and service availability. The remaining chapters in Part II, “ Analysis, ” explore
these risks in detail. Chapter 10 , “ Applications, Solutions and Accountability, ” consid-
ers how cloud service models change accountability and measurement contexts for
service reliability and availability impairments, and the remainder of Part III, “ Recom-
mendations, ” discusses how to mitigate the risks to service reliability and service
availability of cloud computing.

 II

ANALYSIS

65

 The technical challenge this book considers is how one can assure that the benefi ts of
cloud computing (see Section 1.7) are achieved without diminishing service reliability
and service availability to levels below those achieved by traditional application deploy-
ment models. While the specifi c reliability and availability risks of a particular applica-
tion are determined by the architecture, deployment, and operational details of the
deployed application, one can consider and usefully analyze the reliability and avail-
ability risks inherent to cloud computing.

 This part of the book (Part II, “ Analysis ”) analyzes the risks to service reliability
and availability of cloud computing; Part III, “ Recommendations, ” discusses techniques
for minimizing the service reliability and reliability risks of cloud computing. This
chapter frames the general expectations for service reliability and service availability
of cloud computing, and gives an overview of how the essential and common charac-
teristics of cloud computing and cloud service and deployment models can impact those
expectations. Subsequent chapters in Part II, “ Analysis, ” of this book consider these
risks in detail.

 4.1 EXPECTATIONS FOR SERVICE RELIABILITY AND AVAILABILITY

 Users ’ baseline expectations for service reliability and service availability are largely
determined by the behavior of the service they have historically received. For example,

 4

ANALYZING CLOUD
RELIABILITY AND AVAILABILITY

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

66 ANALYZING CLOUD RELIABILITY AND AVAILABILITY

users will expect the service reliability and service availability of long - term evolution
(LTE) fourth - generation wireless to be at least as good as the second - or third - generation
wireless service (e.g., Universal Mobile Telecommunications System (UMTS), Global
System for Mobile Communication s (GSM), Code Division Multiplex Access (CDMA),
 Wideband Code Division Multiplex Access [WCDMA]) they received previously, and
subscribers ’ expectations for Internet Protocol Television (IPTV) service are set in the
context of the terrestrial free to air, cable, or satellite service they currently receive.
Thus, the initial expectation for applications delivered via cloud computing is likely
to be that service reliability and service availability is equivalent to the reliability and
availability offered via a traditional, native application deployment architecture. Con-
cretely, an end user accessing a service on the Internet from their browser or client
application should not experience lower service reliability or service availability
because the application is deployed on a computing cloud rather than natively in a
traditional data center.

 This expectation cascades to individual applications themselves; if an enterprise
(“ consumer ” in cloud parlance) expects an application to achieve “ fi ve 9 ’ s ” service
availability when traditionally deployed on native hardware, then they are likely to
expect that application to achieve fi ve 9 ’ s service availability when deployed on a
virtualized platform (e.g., as a virtual appliance). Users will expect the same service or
transactional reliability from cloud - based deployments as well. This means that the rate
of failed transactions (e.g., failed calls and unsuccessful or hung web page loads) should
be no higher for cloud deployment than for traditional deployment. Therefore, the
analysis and recommendations of this book will consider the feasible and likely service
reliability and service availability of virtualized and cloud - based applications compared
with the baseline of native deployment.

 4.2 RISKS OF ESSENTIAL CLOUD CHARACTERISTICS

 This section considers the reliability and availability risks of each of the essential
characteristics of cloud computing (see Section 1.1): on - demand self - service, broad
network access, resource pooling, elastic growth, and measured service.

 4.2.1 On - Demand Self - Service

 On - demand self - service transforms service provisioning from a rare special case to
a key function of cloud - based applications. In particular, on - demand self - service is
key for rapid elasticity by enabling cloud consumers to order more resource capacity
on the fl y as offered load increases. For certain applications and certain customers,
self - service provisioning functionality might be so important that loss of self - service
provisioning functionality is deemed a partial service outage and is prorated appro-
priately. Thus, service reliability and service latency of self - service provisioning
operations become key quality indicators of cloud computing. Specifi cation of key
quality indicators is discussed in Section 8.2.2 , “ Service Reliability and Availability
Measurements. ”

RISKS OF ESSENTIAL CLOUD CHARACTERISTICS 67

 4.2.2 Broad Network Access

 Wireless and wireline access networks, in conjunction with wide area networking, will
typically connect users of cloud computing services to the cloud data center hosting
the servers executing the cloud consumer ’ s application software. Thus, IP networking
service availability, reliability, and latency directly impact users ’ quality of experience.
While modern wireline networks generally offer consistently high service reliability
with low latency, wireless networking — especially mobile wireless networking — is
inherently subject to additional factors that can adversely impact quality, reliability,
latency, and availability of IP networking service. Service quality, reliability, and avail-
ability of wireless and wireline IP networking is beyond the scope of this book.

 4.2.3 Resource Pooling

 Resource pooling enables service providers to boost resource utilization and thereby
drive down costs. Resource pooling raises several potential service risks:

 • Virtualization Risks to Service Reliability and Service Availability . Virtualiza-
tion technology makes it practical to pool and share compute, memory, net-
working, and storage resources. Virtualization technology introduces system
reliability risks, as well as changing software reliability risks (both covered in
Chapter 5 , “ Reliability Analysis of Virtualization ”) and hardware reliability risks
(covered in Chapter 6 , “ Hardware Reliability, Virtualization, and Service
Availability ”).

 • Service Latency Jitter Due to Resource Scheduling and Contention . Discussed
in Chapter 7 , “ Capacity and Elasticity. ”

 • Service Disruptions Due to Live (Online) Virtual Machine (VM) Migration . To
assure effi cient resource utilization, cloud service providers are likely to leverage
online and offl ine migration capabilities supported by virtualization products to
maximize resource utilization (e.g., consolidating workloads and taking unneeded
capacity temporarily offl ine) and to complete routine and service transition
actions (discussed in Section 11.3 , “ IT Service Management Considerations ”).
Online workload migration carries the risk that user service will be delayed or
impacted, possibly causing some service requests or transactions to fail (impact-
ing service reliability metrics) or for some operations to be delayed (impacting
service latency metrics). Occasionally, some online migration actions may fail
to complete successfully and impact all users who were being served by the
impacted application instance. These potential risks must be balanced against the
benefi ts of online migration and its potential to greatly reduce downtime that
would be realized on more traditional systems.

 4.2.4 Rapid Elasticity

 Rapid elasticity enables service capacity to expand and contract rapidly while the
service is online. The authors will use the term “ growth ” to refer to expansion of service

68 ANALYZING CLOUD RELIABILITY AND AVAILABILITY

capacity and “ de - growth ” to refer to contraction of resource capacity. For example, a
traditional hardware “ growth ” procedure is to add more RAM or another hard disk
drive to a server that is installed and nominally in production service. Likewise, a
traditional “ de - growth ” procedure would be to remove RAM or a hard disk drive that
is no longer required by one system; a subsequent “ growth ” operation would presum-
ably install that reclaimed RAM or hard disk drive into another system that could benefi t
from the additional resources. Growing or de - growing engineered capacity is tradition-
ally a service impacting operation and is often executed offl ine.

 In the context of cloud computing, elastic capacity “ degrowth ” is the logical oppo-
site of elastic capacity growth. Rapid elasticity contrasts with traditional application
architectures where systems are explicitly dimensioned for a particular engineered
capacity. For example, the resource capacity allocated for a particular application might
elastically grow during a busy period (e.g., the holiday shopping season for a retailer),
and then de - grow after the holidays when the additional resource capacity is no longer
required. Since cloud consumers pay for resources allocated to them (e.g., per VM per
month charge), de - growing capacity that is no longer required reduces the cloud con-
sumer ’ s operating expenses.

 Rapid elasticity introduces several general risks:

 • Service Impact of Growth/Degrowth Operations . Rapid elasticity should have
no service impact on active users; this requirement should be explicitly specifi ed
and verifi ed.

 • Reliability and Latency of Growth/Degrowth Operations . Growth and de - growth
operations are inherently complex and present a direct risk to availability of
engineered capacity to serve offered load. Transactional reliability and transac-
tional latency of online growth and de - growth operations are key metrics. Critical
software bugs can cause applications to crash or hang as databases and confi gura-
tion tables are expanded or contracted, or when executing any of the myriad other
online operations necessary to support rapid online elasticity.

 • Elasticity Failure . If service is not able to grow capacity fast enough to track
with increases in offered load before spare online capacity is exhausted, then
some users will not be served with acceptable service quality, reliability and
latency due to insuffi cient online capacity to serve offered load. Therefore, over-
load control mechanisms will still be needed in these cases to manage the
increases in offered load before suffi cient online capacity has been added.

 These risks are considered in Chapter 7 , “ Capacity and Elasticity. ”
 In addition, the infrastructure as a service (IaaS) service model of cloud computing

completely transforms the roles and responsibilities regarding capacity engineering.
IaaS suppliers are responsible for providing computing resources to cloud consumers
instantly on - demand, and application suppliers and/or cloud consumers are responsible
for requesting and assimilating additional resources fast enough so that all offered load
is served with acceptable service latency and service reliability. As specifi c IaaS service

RISKS OF ESSENTIAL CLOUD CHARACTERISTICS 69

providers inevitably have fi nite resources that are shared across cloud consumers, it is
possible that occasionally the IaaS ’ s pool of resources will be fully allocated, and thus
additional resource requests may be denied. In this case, the application may burst out
of the cloud to engage available resources offered by another cloud. Someone (e.g.,
cloud consumer or IaaS service provider) is responsible for orchestrating the cloud burst
to assure successful elasticity to an alternate cloud and appropriate resource release
when those resources are no longer required.

 4.2.4.1 Policy Considerations. Since cloud elasticity provides the promise of
infi nite capacity for an application, from a business point of view, this is often tempered
by affordability. Operational policies defi ne guidelines for the capacity, availability,
reliability, security, data, privacy, and quality of service requirements that must be met.
Those policies are the basis for determining the cost of support and help to determine
how much the system can grow and stay within that budget. Policies can also defi ne
system boundaries, that is, where the servers and data must be located to meet regula-
tory standards or quality of service requirements. Policies are thus used to set up the
confi guration and to monitor adherence to the agreed upon requirements. If the require-
ments change (e.g., the capacity increases), then additional resources will need to be
purchased, and the policies are changed accordingly. The reverse is true if the require-
ments change per a decrease in expectations (e.g., decrease in needed capacity support).
Policies will be discussed in later sections concerning their role in service orchestration
(i.e., in Section 8.2 , “ Policy - Based Management ”).

 4.2.5 Measured Service

 Rapid elasticity coupled with a pay - as - you - go pricing model means that it is important
for cloud support systems to carefully track resource usage for each application over
time. As cloud consumers will generally be charged for resources used, there is an
incentive for consumers to release unneeded resources, promptly to minimize their
operating expenses. De - growing resource usage has different reliability and availability
risks than resource growth has; de - growth risks are also considered in Chapter 7 ,
 “ Capacity and Elasticity. ”

 The foundation of measured service is obviously the usage data itself. Beyond the
simple risk of data unavailability or loss, there are several measurement reliability and
integrity risks:

 • Data Accuracy . Maximum rate of inaccurate usage data (e.g., maximum defec-
tive records per million or DPM).

 • Data Completeness . Maximum rate of missing or damaged usage records (e.g.,
missing, damaged or corrupted usage records per million ideal records).

 • Timestamp Accuracy . The maximum rate of usage records (e.g., defects per
million [DPM]) for which timestamp accuracy is incorrect by more than a speci-
fi ed number of milliseconds or seconds.

70 ANALYZING CLOUD RELIABILITY AND AVAILABILITY

 Service measurements are discussed in Section 8.2.2 , “ Service Reliability and Avail-
ability Measurements. ”

 4.3 IMPACTS OF COMMON CLOUD CHARACTERISTICS

 This section considers the reliability and availability impacts of six common charac-
teristics of cloud (see Section 1.2).

 4.3.1 Virtualization

 Virtualization technology decouples application software from the underlying
hardware, thereby increasing deployment fl exibility and enabling applications work-
loads to be deployed to computing clouds. Reliability risks of virtualization technol-
ogy and virtualized applications are discussed in Chapter 5 , “ Reliability Analysis of
Virtualization. ”

 Virtualization itself does not impact customers ’ expectations for service reliability
and service availability, so if an enterprise expected fi ve 9 ’ s service availability from
the natively deployed application, then they are likely to expect fi ve 9 ’ s when the
application is deployed as a virtual appliance or on a virtualized platform. Applica-
tion availability is managed by factoring downtime into appropriate categories, assign-
ing downtime budgets by category, and managing each downtime category to meet
its budget. Traditionally application service downtime is factored into software -
 attributable service downtime and hardware - attributable service downtime. Software
downtime of virtual applications is discussed in Chapter 5 , “ Reliability Analysis of
Virtualization, ” and hardware downtime is discussed in Chapter 6 , “ Hardware Reli-
ability, Virtualization, and Service Availability. ” The evolution of downtime budgets as
traditional applications migrate to the cloud is considered in Section 10.3 , “ System
Downtime Budgets. ”

 4.3.2 Geographic Distribution

 Distributing applications to data centers physically close to end users can both reduce
service latency and improve service reliability and availability by minimizing the IP
networking equipment and facilities between the serving data center and the end user.
Geographic distribution also facilitates distributing application functionality across
several data centers, such as pushing/caching contents in content distribution network
(CDN) elements close to users to reduce transport latency, and thus improve users ’
quality of experience.

 Geographic distribution is a necessary, but not suffi cient, condition for geo-
graphic redundancy, and hence for disaster recovery. Chapter 9 , “ Geographic Distribu-
tion, Georedundancy, and Disaster Recovery, ” explains how geographic distribution
relates to geographic redundancy, and how geographic redundancy supports disaster
recovery.

RISKS OF ESSENTIAL CLOUD CHARACTERISTICS 71

 4.3.3 Resilient Computing

 Mechanisms and architectures that improve the robustness and resiliency of cloud
computing platforms and the applications hosted on those platforms will improve
service reliability and availability of cloud - based applications. Resilient and high
availability computing mechanisms are discussed in Chapter 5 , “ Reliability Analysis
of Virtualization, ” and in Chapter 11 , “ Recommendations for Architecting a Reliable
System. ”

 4.3.4 Advanced Security

 Advanced security is essential in protecting services from denial of service and other
security attacks that can adversely impact service availability; this is discussed in
Section 7.8 , “ Security and Service Availability. ”

 4.3.5 Massive Scale

 Massive scale systems will require a more complete and thorough set of service
management processes supported by service orchestration and automation to ensure
the complexity of the large system can be well managed to mitigate risks to service
reliability and availability. IT Service Management risks are discussed in Section
 4.5 .

 4.3.6 Homogeneity

 Limiting the range of different hardware and software platforms supported to achieve
homogeneity should reduce the risk of service provider errors and failures because
common policies and procedures can effectively be deployed in homogeneous environ-
ments. Homogeneity inherently reduces the number of different types of procedures to
automate and/or that maintenance staff execute, and increase the frequency that a
smaller set of procedures are executed. As staff gains more experience and expertise
with that smaller set of products due to familiarity and frequent execution, the probabil-
ity of successful execution should increase and the execution time should decrease.
Both of these should somewhat decrease overall service downtime. Increased automa-
tion should reduce human involvement — thereby eliminating the risk of human error —
 and maximize consistency and reproducibility; both of these factors should reduce
failure rates of IT service management actions. Human errors should be less frequent
in homogeneous environments because staff gain more experience executing policies
and procedures in a homogeneous environment compared with the alternative of operat-
ing in a less consistent heterogeneous environment. It is possible, however, that some
customers, particularly large customers, may want custom environments that could
include custom tools, policies, and procedures. Customization may attenuate some of
the reliability benefi ts of homogeneity

72 ANALYZING CLOUD RELIABILITY AND AVAILABILITY

 4.4 RISKS OF SERVICE MODELS

 Decomposing traditional IS/IT deployment into application consumers and infra-
structure - , platform, or software - as - a - service providers is fundamental to cloud comput-
ing (see Section 1.4 , “ Service Models ”). To methodically characterize the roles and
responsibilities of both cloud service providers and cloud consumers, we will apply
the 8i + 2d model to cloud computing and consider the implications for cloud
consumers.

 4.4.1 Traditional Accountability

 Traditionally, “ fi ve 9 ’ s ” claims and expectations consider only product - attributable
impairments (see Section 3.3.6 , “ Outage Attributability ”) of individual systems (i.e.,
application software running on hardware). This was fair for both system suppliers
and the suppliers ’ customers operating the system because the supplier took responsibil-
ity for what they directly controlled, and the customer (enterprise) retained respon-
sibility for both customer - attributable and external - attributable (e.g., force majeure)
outages. This allocation of responsibility is visualized in Figure 4.1 by crudely overlay-
ing TL 9000 outage accountability from Section 3.3.6 , “ Outage Attributability, ” onto
the 8i + 2d framework visualized in Figure 3.3 from Section 3.2 , “ Eight - Ingredient
Framework. ” Suppliers have responsibility for their hardware and software, as well
as interworking with other networked elements via application protocols. Customers

 Figure 4.1. TL 9000 Outage Attributability Overlaid on Augmented 8i + 2d Framework.

Data Center

Software

Hardware

Environment

Power
Human

Policy

Application
Payload

IP Network

Product-attributable outages are primarily
triggered by:

1. the system design, hardware, software,
components, or other parts of the system,

2. scheduled outage necessitated by the
design of the system, or …

Customer-attributable outages are
primarily triggered by:

1. customer’s [service provider] procedural
errors,

2. office environment, for example power,
grounding, temperature, humidity, or
security problems, or ...

External-attributable outages are caused
by natural disasters such as tornadoes or
floods, and outages caused by third parties
not associated with the [customer/service
provider] or the [supplier]…

Data Customer is responsible for their own data

Force Majeure and Disaster Events

RISKS OF SERVICE MODELS 73

retain responsibility for creation, integrity, maintenance, and other aspects of their data.
Note that power, environment, IP networking, human, and policy ingredients have been
logically aggregated together as “ data center, ” and this captures the common sense
notion that systems from suppliers are installed in data centers maintained by customers/
enterprises. Force majeure and external - attributable outages are always a risk to data
centers, and this risk must be managed by the customer/enterprise.

 4.4.2 Cloud - Based Application Accountability

 Figure 4.2 visualizes how outage responsibilities map onto the 8i + 2d cloud frame-
work of Figure 4.1 . The cloud consumer is responsible for the creation and integrity
of their data and confi guration information, as well as the policies and maintenance
staff that (remotely) operate, administer, maintain, and provision their application soft-
ware and data. A system integrator or software supplier is responsible for assuring
correct operation of application software, including interworking with other network
elements via application protocols. The cloud service provider is responsible for all
data center resources (environment, power, network connectivity, operational policies,
and maintenance staff), IP networking infrastructure, as well as hardware resources
and the supporting platform software. In addition to maintaining confi guration data for
all virtualized resources and data center facilities, the cloud service provider is also
responsible for assuring that cloud consumers ’ data written to virtualized storage are
protected and available on demand. Note that while cloud service providers often

 Figure 4.2. Outage Responsibilities Overlaid on Cloud 8i + 2d Framework.

Cloud Data Center

Software

Hardware

Environment
Power

Application
Payload

Human

Policy
Software

IP Network

Data

Data

Human

Policy

Force Majeure and External Events

Cloud consumer is responsible
for their staff, operational

policies, and the correctness of
their data

Software supplier is responsible
for their software and

interworking with other
elements via IP networking

Cloud service provider is
responsible for their data
center, as well as for the

virtualized hardware platforms
and preservation of cloud

consumers’ data

Cloud consumer is responsible
for arranging to mitigate force

majeure or external events
impacting individual data

centers hosting their application

74 ANALYZING CLOUD RELIABILITY AND AVAILABILITY

operate multiple geographically redundant data centers, it is the responsibility of the
cloud consumer to make suitable arrangements to assure that service can be rapidly
recovered following force majeure or other external event that renders a single data
center unavailable.

 4.5 IT SERVICE MANAGEMENT AND AVAILABILITY RISKS

 Sophisticated enterprises recognize that while individual components may offer a high
theoretical availability, the observed service availability in real - world operation rarely
approaches the theoretically maximum service availability. The FAA explicitly distin-
guishes these notions as inherent availability and operational availability, and defi nes
them as follows:

 • Inherent availability (A i) — “ the maximum availability theoretically within the
capabilities of the system or constituent piece. . . . Scheduled downtime is not
included in the Inherent Availability measure. A i is an inherent design character-
istic of a system that is independent of how the system is actually operated and
maintained in a real world environment ” [FAA - HDBK - 006A] .

 • Operational availability (A op) — “ the availability including all sources of down-
time, both scheduled and unscheduled. A op is an operational measure for deployed
systems that is monitored by NAPRS ” [FAA - HDBK - 006A] .

 The difference between the inherent availability (A i) and operational availability (A op)
is largely determined by IT service management (ITSM). IT service management is
the implementation and operation of information technology systems to meet the
needs of the enterprise. IT service management covers service design, release, deliv-
ery, control, and resolution processes for IS/IT services, and perhaps even more in
broader defi nitions of the term. There are a number of IT service management
standards and frameworks, including ISO/IEC 20000, Control Objectives for Infor-
mation and Related Technology (COBIT), Microsoft ’ s operations framework [MOF] ,
and the Information Technology Infrastructure Library (often known simply by its
acronym “ ITIL ”). As ISO/IEC 20000 is based on ITIL service management pro-
cesses, the authors will analyze IT service management in the context of the 2011
edition of ITIL. This section considers how IT service management impacts opera-
tional service availability.

 4.5.1 ITIL Overview

 ITIL factors IT service management into fi ve categories: service strategy, service
design, service transition, service operation, and continual service improvement as
shown in Figure 4.3 .

IT SERVICE MANAGEMENT AND AVAILABILITY RISKS 75

 The following sections review each of these fi ve areas and consider the risks to
service reliability and service availability for successful and unsuccessful service man-
agement actions. A summary of IT service management risks is also given.

 4.5.2 Service Strategy

 ITIL Service Strategy [ITILv3SS] essentially defi nes a plan for delivering and manag-
ing information services that meet an enterprise ’ s business needs. The service strategy
includes fi ve processes:

 • strategy management for IT services;

 • service portfolio management;

 • fi nancial management of IT services;

 • demand management; and

 • business relationship management.

 While these general processes are crucial to business success, for the most part, they
do not have a direct impact on delivered service reliability or service availability.
However, specifi c aspects of the service strategy, especially the use of automation, can
have a large impact on service reliability and service availability. Service automation
in particular — a major component of “ service orchestration ” in the context of cloud
computing — can improve service reliability by reducing risks associated with complex-
ity and human errors.

 Figure 4.3. ITIL Service Management Visualization.

Service Strategy
Strategy management

for IT services
Service portfolio

management
Financial management of

IT services
Demand management
Business relationship

management

Service Design
Design coordination
Service catalogue

management
Service-level management
Availability management
Capacity management
IT service continuity

management
Information security

management system
Supplier management

Service Transition
Transition planning and

support
Change management
Service asset and

configuration management
Release and deployment

management
Service validation and

testing
Change evaluation
Knowledge management

Service Operation
Event management
Incident management
Request fulfillment
Problem management
Access management

Continual Service Improvement
1. Define what you should measure
2. Define what you can measure
3. Gather the data
4. Process the data
5. Analyze the information and data
6. Present and use the information
7. Implement improvement

DA
TA

76 ANALYZING CLOUD RELIABILITY AND AVAILABILITY

 Note that Appendix C of [ITILv3SS] considers service strategy and the cloud.
This appendix highlights four components of cloud architecture that are essential for
success:

 • Service Catalog and Portal . Communicates to customers the cloud services that
are available for purchase and the service level expectations for each. While the
service catalog and portal sets expectations for service reliability and service
availability, it has no direct impact on them.

 • Service Governance . Defi nes and automates the operational policies, standards,
and practices of the cloud service provider that facilitate but do not directly
impact service reliability and service availability.

 • Service Delivery Management . Monitors and reports usage by cloud consum-
ers of cloud services. This also covers: service operations processes, capacity
management, availability management, security management, and business con-
tinuity management. As such, this component does directly impact the service
reliability and service availability of cloud - based solutions.

 • Infrastructure and Service Delivery . Obviously, the service provider ’ s XaaS
infrastructure and service delivery mechanisms directly impact the service reli-
ability and service availability experienced by cloud consumers.

 4.5.3 Service Design

 Service design strives to create IT systems that achieve the goals of the service strategy
and require minimal changes after initial deployment. ITIL service design [ITILv3SD]
covers the processes of:

 • design coordination;

 • service catalog management;

 • service level management;

 • availability management;

 • capacity management;

 • IT service continuity management;

 • information security management system; and

 • supplier management.

 Of these activities, service - level management and availability management have direct
and explicit linkages to the reliability and availability of the offered service. Service -
 level management essentially sets the service level requirements for reliability and
availability, and availability management ensures the feasibility and likelihood of
meeting those targets. Chapter 12 , “ Design for Reliability of Virtualized Applications, ”
and Chapter 13 , “ Design for Reliability of Cloud Solutions, ” as well as traditional
design for reliability works like [Bauer10] , consider these topics from a reliability
engineering perspective.

IT SERVICE MANAGEMENT AND AVAILABILITY RISKS 77

 Rapid elasticity is an essential characteristic of cloud computing that enables
capacity management to follow a very different paradigm; Chapter 7 , “ Capacity and
Elasticity, ” discusses this topic in detail. Automation of capacity management in the
context of cloud computing is often called service automation; Chapter 8 , “ Service
Orchestration Analysis, ” discusses this topic in detail.

 IT service continuity management (ITSCM) focuses on mitigation of risks and
recovery of the service following a critical failure or a disaster. ITSCM of critical
services traditionally focused on geographic redundancy to assure prompt recovery time
and recovery point objectives could be achieved. With appropriate engineering, geo-
graphic distribution of cloud data centers can be leveraged to both support IT service
continuity management as well as improve users ’ quality of experience in normal (i.e.,
nondisaster) periods; this topic is considered in detail in Chapter 9 , “ Geographic Dis-
tribution, Georedundancy, and Disaster Recovery. ”

 4.5.4 Service Transition

 Service transition strives to assure that new service introduction and subsequent changes
are effi ciently executed with minimal impact to service users. ITIL service transition
 [ITILv3ST] covers the processes of:

 • transition planning and support;

 • change management;

 • service asset and confi guration management;

 • release and deployment management;

 • service validation and testing;

 • change evaluation; and

 • knowledge management.

 IT service transition focuses on mitigation of risks associated with the introduction of
new or changed services. All of the processes contribute to this focus through careful
management of assets, version control, and validation. Of particular importance to
service reliability and service availability is release and deployment management,
which focuses on the successful development, testing, and delivery of a new or changed
service in accordance with customer requirements. Activities, such as software upgrade
and patch, are facilitated through virtualization and cloud mechanisms, which support
nonimpact to user service during these activities. Mitigation of risks associated with
service transition activities is discussed in Section 11.3 , “ IT Service Management
Considerations. ”

 4.5.5 Service Operation

 ITIL service operation [ITILv3SO] covers the processes of:

 • event management;

 • incident management;

78 ANALYZING CLOUD RELIABILITY AND AVAILABILITY

 • request fulfi llment;

 • problem management; and

 • access management.

 These service operation processes are covered by fi ve core functions:

 • service desk;

 • technical management;

 • IT operations management;

 • Application management; and

 • monitoring and control.

 Effi ciency and effectiveness of a provider ’ s service operations have a major impact on
overall service availability. Event and incident management processes directly impact
the duration of service disruptions for failures that are not automatically detected and
recovered properly. Best in class event and incident management processes strive to
proactively detect events before they cascade into service disruptions and resolve them
with minimal service disruption. Request fulfi llment ensures that requests for changes
or for information are handled properly. Problem management processes should ensure
that in addition to resolving problems promptly, the root cause of the problem is identi-
fi ed and corrected to minimize the risk of reoccurrence.

 While access management technically grants or denies a user ’ s availability to IS/
IT services or data, each access management error generally affects a very small portion
of IS/IT users — often just a single user — so those events are not generally classifi ed as
outages, and thus downtime or unavailability metrics are not impacted.

 IT service monitoring is crucial to assure that all failures are promptly detected
and mitigated via event and incident management processes. Operations and application
management functions must be correctly executed to assure user service is not impacted.
Properly trained staff that are able to make excellent decisions assessing and managing
risks to service operation is crucial.

 4.5.6 Continual Service Improvement

 ITIL continual service improvement [ITILv3CSI] strives to improve service quality and
effectiveness of IS/IT. ITIL recommends a seven - step continual service process of:

 1. Defi ne what you should measure.

 2. Defi ne what you can measure.

 3. Gather the data.

 4. Process the data, including scrubbing for accuracy.

 5. Analyze the data to determine if targets were met, understand trends, and rela-
tionships among the data, and propose corrective actions.

IT SERVICE MANAGEMENT AND AVAILABILITY RISKS 79

 6. Present and use the information and corrective actions.

 7. Implement corrective actions and improvements.

 Continual service improvement also covers regular reporting of key service perfor-
mance indicators to keep leaders aware of observed service quality, reliability, and
availability.

 4.5.7 IT Service Management Summary

 Figure 4.4 illustrates the IT service management processes and topics that have the
most impact on service reliability and availability.

 IT Service Management provides well - defi ned processes to direct all aspects of
customer service from strategy to deployment onto monitoring and improvement.
Each process in some way supports and enables a highly reliable service, but the pro-
cesses included in Figure 4.4 have the most direct impact on defi ning and maintain-
ing service to ensure that it meets the customers ’ requirements for availability and
reliability.

 4.5.8 Risks of Service Orchestration

 As defi ned in Section 8.1 , “ Service Orchestration Defi nition, ” service orchestration
entails the linking together of architecture, tasks, and tools necessary to initiate and
dynamically manage a service. Service orchestration provides an infrastructure for
automating the confi guration and management of a cloud - based service that conforms
to associated operational policies. In the cloud computing environment, this entails not
only confi guring software to hardware, but also determining effi cient work fl ows,

 Figure 4.4. IT Service Management Activities to Minimize Service Availability Risk.

Service Strategy
Service automation

Service Design
•Service level management
•Availability management
•Capacity management

For disaster mitigation:
IT service continuity

management

Service Transition
•Change management
•Service asset and
configuration management
•Release and deployment
management
•Service validation and
testing

Service Operation
•Event management
•Incident management

Continual Service Improvement
1. Define what you should measure
2. Define what you can measure
3. Gather the data
4. Process the data
5. Analyze the information and data
6. Present and use the information
7. Implement improvement

DA
TA

80 ANALYZING CLOUD RELIABILITY AND AVAILABILITY

adherence to service agreements and standards, billing, and monitoring all in an auto-
mated way. Automation is a benefi t for service orchestration, but it can also introduce
some risks:

 • If there is a bug associated with a particular application instance, the automatic
creation of additional instances of that application may further spread this issue.

 • Service orchestration may introduce a level of complexity that makes the system
more error prone.

 • Service orchestration coupled with rapid elasticity may result in the automatic
allocation of resources that the customer is not prepared to pay for. A more
manual approach might be requested by some customers.

 The effectiveness of the service orchestration may be measured based on service avail-
ability, service reliability (e.g., number of defective transactions against the number
attempted), and service latency. The reliability implications of service orchestration will
be analyzed in Chapter 8 , “ Service Orchestration Analysis. ”

 4.5.9 IT Service Management Risks

 Service management of cloud - based applications is inherently more complex than
traditional application deployments because the organizational split between the cloud
consumer and the cloud service provider introduces the risk of confusion over roles
and responsibilities for aspects of IT service management. Even when roles and respon-
sibilities are clear, the split between consumer and provider introduces one more orga-
nizational boundary, which adds both latency and the risk of errors across the interface.

 A more subtle service management risk may arise from historic assumptions about
the reliability and availability requirements for systems that support IT service manage-
ment. [Oppenheimer] observed that some enterprises have historically focused on
improving service availability for end users without bothering to improve the resilience,
robustness, and redundancy of the systems that support IT service management. This
strategy was driven by the notion that since end users are powerless to mitigate service
problems, it was important to the business that end user service be robust and reliable.
In contrast, IT staff was empowered to work around failures of their support systems,
so it was less important to make those systems robust and reliable. While this strategy
may have been successful when IT staff had full visibility, access, and control of their
traditional systems, fragile support systems may prove too brittle and inadequate for
more elastic and dynamic cloud deployment models. Thus, enterprises should recon-
sider if their IT service management support systems are reliable and robust enough to
support the user service availability expectations.

 4.6 OUTAGE RISKS BY PROCESS AREA

 To better manage service downtime, it is useful to map the 8i + 2d ingredients to the
process or best practice areas that assure proper operation and availability of those

OUTAGE RISKS BY PROCESS AREA 81

ingredients. Figure 4.5 visualizes how four broad categories of process or best practices
cover the 8i + 2d ingredients:

 • Design for reliability best practices like [Bauer10] for software, hardware, and
application payload ingredients (including software hardware and payload por-
tions of IP networking equipment) assure highly reliable and available operation
of these ingredients. These best practices, including “ Design for Reliability of
Virtualized Applications ” in Chapter 12 , methodically manage the product -
 attributable service downtime of individual applications.

 • Data center infrastructure standards and best practices like [Uptime] and
 [TIA942] cover power, environment, and aspects of networking infrastructure.
Standard data center tiers set expectations for service availability of data center
power, environment, and networking infrastructure.

 • IT service management , like ITIL best practices, COBIT (for Control OBjectives
for Information and related Technology), and ISO/IEC 20000 families of stan-
dards, covers human, policy, and data ingredients. Specifi cs of the cloud service
model will determine the exact split of responsibilities for IT service management
activities and processes between the cloud service provider and the cloud
consumer.

 • Business continuity planning covers disaster recovery from force majeure and
external events. While comprehensive IT service management frameworks
(e.g., ITIL) explicitly reference business continuity planning (e.g., IT service

 Figure 4.5. 8i + 2d Attributability by Process or Best Practice Areas.

Software

Hardware

Environment
Power

Application
Payload

Human

Policy

IP Network

Data
Human

Policy

Force Majeure and External Events

Cloud consumer’s IT service
management processes (e.g.,

ITILv3, ISO/IEC 20000)

Supplier’s product quality and
design for reliability processes

Cloud service provider’s IT
service management processes

(e.g., ITILv3, ISO/IEC 20000)

Cloud consumer’s (and possibly
service provider’s) disaster

recovery processes

Data

Data center infrastructure
standards and processes (e.g.,

Uptime Institute, TIA-942))

82 ANALYZING CLOUD RELIABILITY AND AVAILABILITY

continuity management or ITSCM, in the context of service design [ITILv3SD]),
it is suffi ciently distinct from routine operations that it is generally considered
separately. Service impact expectations for business continuity plans are rou-
tinely specifi ed as recovery time objective s (RTO) and recovery point objective s
(RPO), which will be described in Section 3.7 , “ High Availability and Disaster
Recovery. ” Chapter 9 , “ Geographic Distribution, Georedundancy, and Disaster
Recovery, ” considers the topic of disaster recovery. Specifi cs of the cloud service
model will determine the exact split of responsibilities for business continuity
planning activities and processes between the cloud service provider and the
cloud consumer. Note that it is not customary to include average annualized
downtime estimates due to force majeure or external events because, thankfully,
these events are very rare.

 4.6.1 Validating Outage Attributability

 To both validate the outage risk by process area factorization and to offer more con-
crete examples of outage causes, this section maps standard Federal Communications
Commission (FCC) outage causes against the four cloud - oriented process risk areas.
Service outages in the real world have a direct or triggering cause, and often have
one or more contributing causes. Mitigating each of these direct and contributing causes
is often addressed by at least one of the four general process areas enumerated above.
This hypothesis is casually validated by considering how a standard set of real - world
outage causes would nominally be addressed by each of these areas. The U.S. FCC
mandates usage of a formal network outage reporting system (NORS) for recording
severe communication disruption events. The formal outage reports explicitly identify
the root cause, direct cause, and contributing factors for each outage event; the standard
set of these causes is given in [NORS] . One can illustrate and validate the outage
attributability by process areas by mapping each of these standard outage categories
into broad process areas. While one can quibble that some items are actually covered
by multiple process areas (e.g., IT service management considers some business
continuity planning topics), this exercise does clarify many of the service outage
risks each process should be mitigating. For simplicity, several NORS categories that
are not directly applicable to cloud computing (e.g., diversity failures of SS7 links) are
omitted.

 • Supplier ’ s design for reliability processes and diligence should mitigate risk of
the following standard outage causes:
 � Design — Software causes, such as “ faulty software load , ” “ inadequate defen-

sive checks , ” and “ ineffective fault recovery or reinitialization action . ”
 � Hardware failure causes, such as “ memory unit failure . ”
 � Design — fi rmware causes, such as “ ineffective fault recovery or reinitialization

action ” and “ Insuffi cient software state indications . ”
 � Design — hardware causes, such as “ inadequate grounding ” or “ poor backplane

or pin arrangement . ”

FAILURE DETECTION CONSIDERATIONS 83

 � Procedural — system vendor causes, such as “ ad hoc activities, outside scope
of method of procedure (MOP) , ” “ insuffi cient supervision/control , ” or “ insuf-
fi cient training . ”

 • Data center infrastructure and processes mitigate the risk of the following outage
causes:
 � Environment (internal) causes, such as “ environmental system failure (heat/

humidity) , ” “ fi re, arcing, smoke damage , ” or “ fi re suppression (water, chemi-
cals) damage . ”

 � Diversity failure causes, such as “ power . ”
 � Power failure (commercial and/or backup) causes, such as “ generator failure , ”

 “ extended commercial power failure , ” or “ lack of routine maintenance/
testing . ”

 • IT service management processes and diligence by both cloud consumer and
cloud service provider should mitigate risk of the following standard outage
causes:
 � Procedural — service provider or other vendor causes, such as “ documentation/

procedures out - of - date, unusable or impractical , ” “ documentation/procedures
unavailable/unclear/incomplete , ” “ inadequate routine maintenance/memory
back - up , ” “ insuffi cient supervision/control , ” or “ insuffi cient training . ”

 � Spare causes, such as “ not available ” or “ on hand — failed . ”
 � Traffi c/System Overload causes, such as “ Inappropriate/insuffi cient Network

Management control(s) ” or “ Mass calling — focused/diffuse network overload . ”

 • Business continuity planning and diligence should mitigate risk of the following
standard outage causes:
 � Environment — external causes, such as “ earthquake , ” “ fi re , ” “ storm — water/

ice , ” or “ storm — wind/trees . ”

 4.7 FAILURE DETECTION CONSIDERATIONS

 Figure 4.6 visualizes eight traditional product error vectors from [Bauer10] . Figure 4.7
shows the subset of traditional product error vectors that are likely to be primarily the
responsibility of the IaaS provider, and Figure 4.8 shows the traditional error vectors
that are likely to be primarily the responsibility of software suppliers or the organization
responsible for the software, such as the software as a service (SaaS) service provider.
Note that additional virtualization - related errors will be discussed in Section 12.6 ,
 “ Robustness Testing, ” and several cloud related errors will be discussed in Section 13.6 ,
 “ Solution Testing and Validation. ” This section considers responsibility for failure
detection and mitigation when applications are deployed to a cloud.

 4.7.1 Hardware Failures

 The IaaS service provider has primary responsibility for detection and mitigation of
hardware failures. Chapter 6 , “ Hardware Reliability, Virtualization, and Service Avail-
ability, ” explicitly considers this error vector.

84 ANALYZING CLOUD RELIABILITY AND AVAILABILITY

 Figure 4.7. IaaS Provider Responsibilities for Traditional Error Vectors.

Failure

Processor failure
Disk failure
Power converter failure
Clock failure or jitter
Ethernet failure
Memory failure
Bus failure
Transient or signal

integrity problem
Application-specific

component failure

NE power failure
Shelf power failure
Single power feed

failure
Overvoltage
Undervoltage
Battery exhaustion
Fuse failure and

replacement
Test backup power

Failure of supporting system
Dropped IP packets
Corrupted IP packets
Out of sequence packets
Brief network outages
Regional power failure
IP port unavailable
Inconsistent real time

clocks
Intershelf IP disruption
Intrashelf IP disruption

Failure to properly plan
or prepare
Failure to promptly

detect a problem
Failure to properly

diagnose problem
Failure to correctly

execute a procedure

ProceduresNetworkSystem
Power

FRU
Hardware

 Figure 4.6. Traditional Error Vectors (from [Bauer10]) .

Failure

Processor failure
Disk failure
Power converter failure
Clock failure or jitter
Ethernet failure
Memory failure
Bus failure
Transient or signal

integrity problem
Application-specific

component failure

Memory leaks and
problems
Resource conflict
Tight or infinite loop
Remote execution

problems
Memory corruption
Bad pointers
Logic errors
Resource leaks
Process hang/abort
Thread hang/abort

File system corruption
Disk full
Log file full
Checksum error
Inconsistent data copies
Database corruption
Shared memory corruption
Linked list breakage
File not found, corrupted or

not accessible
Record not found or

corrupted

NE power failure
Shelf power failure
Single power feed

failure
Overvoltage
Undervoltage
Battery exhaustion
Fuse failure and

replacement
Test backup power

Failure of supporting system
Dropped IP packets
Corrupted IP packets
Out of sequence packets
Brief network outages
Regional power failure
IP port unavailable
Inconsistent real time

clocks
Intershelf IP disruption
Intrashelf IP disruption

Unexpected message
contents or structure
Unexpected message

sequence
Overload, including DDoS
Protocol version mismatch

Failure to properly plan
or prepare
Failure to promptly

detect a problem
Failure to properly

diagnose problem
Failure to correctly

execute a procedure

ProceduresApplication
ProtocolNetworkSystem

Power

Failed failover
Failover to failed FRU
Site failure (verify

georedundancy)
Failure of HA process

RedundancyProgramming
Error Data ErrorFRU

Hardware

FAILURE DETECTION CONSIDERATIONS 85

 4.7.2 Programming Errors

 Programming errors in application and platform software should be detected in virtual-
ized environments by the application ’ s high availability infrastructure just as they are
in native execution environments. Programming errors in host operating system, VM
monitor, or hypervisor are likely to appear to applications as a catastrophic (virtual
machine) hardware failure.

 Application suppliers (and SaaS service providers) have primary responsibility for
detection and mitigation of application software; responsibility for failures of platform
software and guest OS software is often responsibility of platform as a service (PaaS)
suppliers; responsibility for hypervisor failures generally rests with IaaS supplier.
Chapter 5 , “ Reliability Analysis of Virtualization, ” considers mitigation and detection
of errors in this category.

 4.7.3 Data Inconsistency and Errors

 Data inconsistencies and errors appear and must be detected by application and platform
software in virtualized environments just as they are in native environments. One
potential advantage of practical virtualized environments is that they may offer addi-
tional processing and I/O resources so that an application ’ s data audit routines can be
run more often and/or with more elaborate checking logic, thus reducing the risk that

 Figure 4.8. Software Supplier (and SaaS) Responsibilities for Traditional Error Vectors.

Failure

Memory leaks and
problems
Resource conflict
Tight or infinite loop
Remote execution

problems
Memory corruption
Bad pointers
Logic errors
Resource leaks
Process hang/abort
Thread hang/abort

File system corruption
Disk full
Log file full
Checksum error
Inconsistent data copies
Database corruption
Shared memory corruption
Linked list breakage
File not found, corrupted or

not accessible
Record not found or

corrupted

Failure of supporting system
Dropped IP packets

Unexpected message
contents or structure
Unexpected message

sequence
Overload, including DDoS
Protocol version mismatch

Failure to properly plan
or prepare
Failure to promptly

detect a problem
Failure to properly

diagnose problem
Failure to correctly

execute a procedure

ProceduresApplication
ProtocolNetwork

Failed failover
Failover to failed FRU
Site failure (verify

georedundancy)
Failure of HA process

RedundancyProgramming
Error Data Error

86 ANALYZING CLOUD RELIABILITY AND AVAILABILITY

a data inconsistency or error will be fi rst encountered by production code and thus
cascade into a software failure. For example, database integrity audit programs could
be executed in a separate VM instance so that resources consumed for the integrity
check would have minimal impact on the running application. It is important to clarify
responsibility for detection and recovery from data - related failures. For example, if a
fi le system is corrupted, is the fi le system repair the responsibility of the XaaS service
provider or the cloud consumer?

 4.7.4 Redundancy Errors

 Virtualization invariably changes the specifi cs of at least some application redun-
dancy arrangements by mapping some redundancy into virtual machines rather than
native hardware devices. Virtualization enabled redundancy mechanisms are discussed
in Section 5.4.2 , “ Virtualized Recovery Options. ” As virtualization can affect operation
and monitoring of both traditional redundancy arrangements (e.g., active/active and
active/warm standby) and virtualization - related redundancy arrangements (discussed
in Section 5.4 , “ Recovery Models ”), one must assure that the high availability mecha-
nism supporting the target application reliably monitors the readiness of all redundant
instances and promptly detects failed switchovers or other redundancy failures. Thus,
software suppliers must assure that the application and platform software reliably detect
the true operational status of both virtualized and native redundant instances.

 4.7.5 System Power Failures

 IaaS service providers have primary responsibility for detecting and mitigating power
failures and impairments.

 4.7.6 Network Errors

 Physical and link layer networking issues (e.g., packet collisions, checksum failures,
and buffer overrun/under run) are likely to be detected by network adapter hardware
and fi rmware, and thus are likely to be addressed beneath the virtual machine that the
application software inhabits. Network layer issues (e.g., IP packets out of sequence,
packet jitter) are likely to be passed straight through to the VM and must be detected
and mitigated by application and platform software.

 4.7.7 Application Protocol Errors

 Application protocol errors must be detected and mitigated by application and plat-
form software in the virtualized environment just as they are in native environments.
For example, the application software logic that detects and mitigates application pro-
tocol failures like unexpected message contents or structure or unexpected message

EXPECTATIONS OF IAAS DATA CENTERS 87

sequence should behave identically when executing on both virtualized and native
deployments.

 4.8 RISKS OF DEPLOYMENT MODELS

 Reliability and availability risks are fundamentally the same for private, community,
public, and hybrid clouds, and thus the same mitigations and metrics are generally
appropriate although the associated roles and responsibilities will differ. Cloud bursting
is when a workload is dynamically shifted from one deployment strategy to another,
such as when migrating some workload from a private or public cloud that is approach-
ing saturation to another provider ’ s public cloud. Cloud bursting has the same primary
reliability risks as rapid elasticity (reliability and latency of engaging additional service
capacity), plus additional risks associated with the identifi cation, authentication, autho-
rization, and commercial relationships necessary to rapidly shift workloads between
distinct enterprises. These additional risks will contribute additional latency to provi-
sioning resources and may cause an individual cloud burst attempt to fail. The risks of
cloud bursting are considered in Chapter 7 , “ Capacity and Elasticity. ” Cloud bursting
also has some architectural challenges such as:

 • The virtualization environments must be the same or it must be possible to
migrate to the new environment.

 • The load balancer (or whichever element is responsible for directing user traffi c)
must be aware of and able to access the extended cloud environment.

 • VM instances must be able to be transferred and instantiated with necessary
resources in the extended cloud environment.

 • If communication is necessary between cloud environments, the networking
layer must support it.

 • Suffi cient security must be set up to protect the application in the extended cloud
environment.

 These challenges may make it impractical for most systems to implement cloud
bursting.

 4.9 EXPECTATIONS OF I AA S DATA CENTERS

 The Open Data Center Alliance [ODCA] defi nes four classes of IaaS data centers:
bronze, silver, gold, and platinum. These classes offer a recognized baseline for IaaS
performance levels. Table 4.1 from [ODCA - SUoM] gives general characteristics of
each class of service; Table 4.2 characterizes service availability expectations. ODCA
frames expectations for a variety of data center performance areas, including elasticity
(discussed in Chapter 7 , “ Capacity and Elasticity ”) and recoverability (discussed in
Chapter 9 , “ Geographic Distribution, Georedundancy, and Disaster Recovery ”).

88 ANALYZING CLOUD RELIABILITY AND AVAILABILITY

 TABLE 4.1. ODCA ’ s Data Center Classifi cation

 Bronze Silver Gold Platinum

 Basic
 Enterprise
Equivalent

 Critical Market
or Business

Sector
Equivalent

 Military or Safety -
 Critical Equivalent

 Outline Representing the
lower - end
corporate
requirement,
possibly equating
to a reasonably
high level for a
small to medium
business customer

 Representing
a tradeoff
more toward
cost than
service level
within the
SLA range

 Representing a
preference for
more cost to
deliver a
higher quality
of service
within the SLA
range

 Representing the
maximum
contemplated
corporate
requirement,
stretching toward
the lower end of
military or safety -
 critical needs

 Price levels € € € € € € € € € €
 Lowest,
commodity

 Premium

 Measures
likely to be
taken

 Standard out - of -
 the - box
components

 Standby or
reassignable
elements

 Full duplication with
load - balancing or
failover, no SPoFs

 Performance
assurances

 Component inputs Component
outputs

 Degrees of
contention
experienced

 User applications
experience

 Scope of
assurances

 Components Subsystems Full systems End - to - end, including
all dependent
elements

 Security
in - built

 Basic Enterprise Financial Military

 Commitment
measurement
periods

 Averaged over
weeks or months

 Daily Hourly Real time, continuous

 Source : Open Data Center Alliance. © 2011 Open Data Center Alliance, Inc. All Rights Reserved.

 SLA, service - level agreement.

EXPECTATIONS OF IAAS DATA CENTERS 89

 TABLE 4.2. ODCA ’ s Data Center Service Availability Expectations by Classifi cation

 SLA Level Description

 Bronze Reasonable efforts to attain 99% availability for the IaaS (up to but
not including the cloud subscriber ’ s components). Note that the
service provider cannot be penalized for any failure of OS or app in
the guest VM, except where the failure is clearly the fault of the
hypervisor or underlying hardware solution.

 Silver Provisions made to attain 99.9% availability, including increased focus
on preventing impact from contention risks.

 Gold Specifi cally demonstrable additional measures needed to achieve and
sustain 99.9% availability and demonstrating resilience to reasonably
anticipated fault conditions. Service penalties should apply at this
level.

 Platinum Highest possible focus on uptime to achieve 99.99% availability, with
the expectation of signifi cantly increased service penalties (beyond
Gold tier) if not achieved.

 Source : Open Data Center Alliance. © 2011 Open Data Center Alliance, Inc. All Rights Reserved.

 SLA, service - level agreement.

90

5

 This chapter gives a qualitative reliability analysis of virtualization technology. It begins
with a review of reliability analysis techniques, and then considers how these tech-
niques apply to the virtualization techniques reviewed in Chapter 2 , “ Virtualization. ”
There is also an analysis on software failure rates, concluding with a comparison
between virtualized and traditional, nonvirtualized applications.

5.1 RELIABILITY ANALYSIS TECHNIQUES

 This section reviews several standard reliability analysis techniques:

 • reliability block diagrams;
 • single point of failure analysis; and
 • failure mode and effects analysis (FMEA).

5.1.1 Reliability Block Diagrams

 Reliability block diagram s (RBD s) are a simple and powerful tool for visualizing
redundancy and analyzing reliability. Reliability block diagrams arrange all service

RELIABILITY ANALYSIS
OF VIRTUALIZATION

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

RELIABILITY ANALYSIS TECHNIQUES 91

critical elements in a series of connected boxes with elements that are redundant shown
in parallel. Figure 5.1 gives an RBD of a hypothetical system with several elements
providing critical service: a single critical component A; pairs of components B1, B2
and C1, C2; and three redundant components D1, D2, and D3.

 For service to be available across the sample system of Figure 5.1 , there must be
at least one path through operational (“ up ”) components from one side of the RBD to
the other; Figure 5.2 illustrates one such traversal path. For example, either B1 or B2
can fail and service remains available. However, if element A, or both B1 and B2, or
both C1 and C2, or D1, D2, and D3 fail, then service will be unavailable.

 Individual blocks within RBDs can be aggregated or decomposed to perform the
appropriate level of analysis. For example, Figure 5.3 gives an RBD of a canonical
simplex (nonredundant) computer - based system: physical computer hardware runs a
software platform (e.g., middleware) and operating system (OS) software that hosts a
software application. Each of these components is illustrated in a separate box, and for
an application service to be operational and available to users, the hardware, OS, soft-
ware platform, and application must all be operational (aka, “ up ”). Conversely, if any
one of these components is unavailable (aka, “ down ”), then service is unavailable.

 Figure 5.1. Sample Reliability Block Diagram.

A

B1

B2

C1

C2

D1

D2

D3

 Figure 5.2. Traversal of Sample Reliability Block Diagram.

A

B1

B2

C1

C2

D1

D2

D3

92 RELIABILITY ANALYSIS OF VIRTUALIZATION

 5.1.2 Single Point of Failure Analysis

 Single point of failure (SPOF) is any single component in a system or solution confi gu-
ration that can fail and cause service to become unavailable. In the RBD example of
Figure 5.1 , module “ A ” is a single point of failure. Critical systems must be designed
to have no single point of failure. Typically, one reviews a proposed design for single
points of failures, and redesigns any components or facilities that are found to be single
points of failure.

 There is a related architectural concept of a single point of maintenance or single
point of repair that considers the impact of maintenance or repair actions. A single point
of maintenance or repair refers to a component that can only be serviced by taking the
entire system offl ine. For example, a basic RAID system may require the unit to be
powered off to safely replace a failed hard disk drive, while a more robust RAID con-
fi guration of the system protects against a single hard disk failure from being a single
point of failure that impacts user service, a simple physical or electrical design makes
the hard disk drive a single point of maintenance or repair. The notion of “ hot ” removal
and installation of blades, hard disks, and so on, directly mitigates the risk of single
point of maintenance or repair. Redundant hardware can prevent the initial failure from
causing a prolonged service outage, but eventually the failed hardware must be repaired
or replaced to return the system to full operational redundancy. If that maintenance or
repair operation requires the entire element to be depowered or rebooted, then that
module represents a single point of maintenance or repair for that element.

 5.1.3 Failure Mode Effects Analysis

 Failure mode effects analysis is a technique for assuring that a design can contain and
recover failures with acceptable service impact. We review the concepts of failure
containment and recovery groups as background, and then discuss FMEA analysis
methodology.

 5.1.3.1 Failure Containment. Containing the impact of a failure is crucial in
preventing a cascade of failures that impact more users and functionality. For example,
modern OSs and processors rigidly separate memory address spaces of different user

 Figure 5.3. Nominal System Reliability Block Diagram.

Hardware
Software
Platform

Application
Software

Operating
System

Simplex
System

A simplex system can be modeled as
hardware, operating system, platform

software, and application software in series
as a simple reliability block diagram. If any

of these components fail, then service is
unavailable.

RELIABILITY ANALYSIS TECHNIQUES 93

processes from each other, thereby enabling individual user processes to experience
critical failures (e.g., divide - by - zero exceptions, accessing undefi ned memory locations,
and unaligned memory access) without directly impacting other processes running on
the same OS instance. Database transactions are a well - known unit of failure contain-
ment; if a transaction fails, then it can be aborted, and any changes executed after the
formal beginning of that transaction will be rolled back, thereby containing the impact
of the failure to losing that single transaction. Virtualization provides an additional level
of rigid failure containment because VM instances are wholly independent of each
other, and thus can be started, and restarted, restored, or recovered without directly
impacting any other VM instances hosted on the same or different hardware platform.
Good hardware designs contain hardware failures to the smallest fi eld replaceable unit.
For example, failure of a single hardware blade in bladed system architecture should
have no impact on other blades in the chassis.

 The ability to rigidly contain failures preventing a failure from cascading into
further failures is crucial in high availability systems. Virtualization offers rigid failure
containment of software failures at the level of virtual machine (VM). In the simplest
scenario, VM containment is equivalent to the containment offered by native server or
blade instances; however, the hypervisor is able to better manage a multitenant confi gu-
ration by more effectively allocating resources and isolating failures experienced by
one tenant from the other. Note that application architectures can be tailored to use
more VM instances than native server instances, and thus offer tighter failure contain-
ment and resource management than with traditional deployment.

5.1.3.2 Recovery Groups. After a failure is contained to a particular hardware or
software module, service must be recovered to a redundant or repaired unit; in the case
of software failures, service could be recovered to a restarted software instance. Service
recovery after failure is inherently more complex if any service state is to be retained,
so special attention should be paid to carefully design and thoroughly test those associ-
ated software modules to ensure they recover rapidly and reliably in a wide variety of
failure scenarios.

 Recovery groups are typically arranged into well - known redundancy arrangements
like N + K load sharing, active/active, or active/standby, so when a critical failure
occurs service is recovered by shifting traffi c to a redundant instance, such as to the
failed active unit ’ s mate or distributed across other elements in the load sharing pool.
The granularity at which service is recovered is the recovery group.

5.1.3.3 FMEA Methodology. Failure mode effects analysis considers the impact
on service of individual component, module, or subsystem failure events. FMEAs are
generally represented in a tabular form where:

 • individual components, modules or subsystems are represented by rows;
 • primary services offered by the system are represented by columns; and
 • individual cells indicate what, if any, impact there is on a particular primary

service when a particular component, module, or subsystem fails and is recov-
ered. Note that the recovery action (e.g., failing over service to a redundant
module) could impact users who were not impacted by the original failure.

94 RELIABILITY ANALYSIS OF VIRTUALIZATION

 It is often convenient to add two additional columns to the table:

 • Nominal time to detect the failure of the individual component, module, or sub-
system; this value is typically represented in seconds.

 • Nominal time to complete an automatic switchover or service recovery action
after detecting failure of the individual component, module, or subsystem.

 Any cells that have unacceptable failure effects or for which failure detection or failure
recovery time exceed system requirements can be highlighted; system architects and
developers should investigate architectural and design changes that can mitigate the
unacceptable effect or behavior. Table 5.1 gives a sample failure mode effects analysis
for a virtualized application of Figure 5.1 .

 TABLE 5.1. Example Failure Mode Effects Analysis

 Functional
Unit

 Redundancy
Strategy

 Impact
on New
Sessions

 Impact
on Stable
Sessions

 Impact on
Transient
Sessions

 Estimated
S/O Latency Notes

 A Simplex LOST LOST LOST Not
supported

 Impact on sessions
until “ A ” is
restarted on
current or new
server

 B Active –
 standby

 LOST No
impact

 LOST 10 seconds Impact on new/
transient sessions
until failover
completed; data
replication
supports
maintaining stable
sessions across
failover

 C Active –
 standby

 LOST No
impact

 LOST 1 second Impact on new/
transient sessions
until failover
completed; data
replication
supports
maintaining stable
sessions across
failover

 D N + K No
impact

 No
impact

 No impact 1 second Failure of one unit
entails load
sharing of traffi c
across the others

RELIABILITY ANALYSIS OF VIRTUALIZATION TECHNIQUES 95

 5.2 RELIABILITY ANALYSIS OF VIRTUALIZATION TECHNIQUES

 The reliability analysis techniques of the previous section are now applied to full vir-
tualization, OS virtualization, and paravirtualization. The RBDs indicate a single appli-
cation in the fi rst three sections but the coresidency use case is considered in Section
 5.2.4 .

 5.2.1 Analysis of Full Virtualization

 Figure 5.4 illustrates how full virtualization changes the canonical system RBD shown
in Figure 5.3 by inserting a virtualization hypervisor and Host OS between the OS and
the underlying hardware. Note that the “ host ” OS can be different from the “ guest ” OS
in full virtualization. For the virtualized deployment of this traditional canonical system
to be available, the hardware, “ host ” OS, hypervisor, “ guest ” OS, software platform,
and application must all be operational.

 The application, with its software platform and OS, comprise a VM. Each VM is
isolated from the other VMs running on the server and is unaware it is running in a
virtual environment. As a result, each VM ’ s failures are contained; VMs can fail and
be recovered independently of other VMs running under the same hypervisor. A VM
instance can be reset, rebooted, or migrated within its failure recovery group based on
the nature of the failure. Since the hypervisor itself is required as the hardware interface
for all of the VMs, it becomes the single point of failure along with the hardware for
the virtualized system.

 5.2.2 Analysis of OS Virtualization

 Figure 5.5 illustrates how the canonical system RBD of Figure 5.3 changes when OS
virtualization inserts a hypervisor running on a primary “ host ” instance of the OS. The

 Figure 5.4. Reliability Block Diagram of Full Virtualization.

Hardware virtualization inserts a
�hypervisor� and host OS between the
system hardware and the software
platform supporting the application to
create the illusion that the application
and software platform have a dedicated
instance of system hardware

Hardware
Software
Platform Application

Operating
System

Hardware
Software
Platform Application

�Guest�
Operating

System

OS
Virtualization

Hypervisor

�Host�
Operating

System

•Traditional Configuration

•Virtualized Configuration

96 RELIABILITY ANALYSIS OF VIRTUALIZATION

RBDs for full virtualization and OS virtualization are the same; the difference is that
on full virtualization, the guest OSs can be different from the host OS, while with OS
virtualization, they must be the same. Note that while both the guest and host OS
instances must be the same OS and version, the guest OS instance is separate and can
fail (aka, crash) and be recovered independently of the host — or other guest — OS
instances.

 OS virtualization also provides partitioning of the application instances, along with
their software platform and guest OS, into isolated partitions sometimes referred to as
virtual environments or containers. This isolation ensures that the failure of one virtual
environment does not impact another virtual environment sharing the OS virtualization
hypervisor, and that each virtual environment will be included in a separate recovery
group than the others.

 5.2.3 Analysis of Paravirtualization

 Figure 5.6 illustrates how the canonical RBD changes when paravirtualization is used.
Like full virtualization, paravirtualization inserts a hypervisor and host OS between the
system hardware and the software platform supporting the application to create the
illusion that the application and software platform have a dedicated instance of system
hardware. The difference is that the guest OS is modifi ed to include integrated device
drivers that offer more direct access between the application instance and hardware
resources since they provide for direct communication without the need for translation.
As with full virtualization, paravirtualization entails the partitioning of the applications
into VMs; each VM can run on an OS different from the host OS. As with full virtu-
alization, each VM with paravirtualization is isolated from the other VMs running on
the server and is unaware it is running in a virtual environment. As a result, each VM ’ s

 Figure 5.5. Reliability Block Diagram of OS Virtualization.

•Traditional Configuration

OS virtualization inserts a �hypervisor�
above a �host� instance of the
operating system. The hypervisor
enables �guest� instances of the same
operating system to run and execute
software platforms and applications.

Hardware
Software
Platform Application

Operating
System

Hardware
Software
Platform Application

�Guest�
Operating

System

OS
Virtualization

Hypervisor

�Host�
Operating

System

•Virtualized Configuration

RELIABILITY ANALYSIS OF VIRTUALIZATION TECHNIQUES 97

failures are contained; a single VM can fail independently of other VMs running under
the hypervisor and recover within its own recovery group.

 Paravirtualization combines advantages of both full virtualization and OS virtual-
ization. OS virtualization offers direct calls from the applications to the OS without
translation since the applications all function on the same OS. This is also the main
disadvantage of OS virtualization, that is, the host and all of the guests must run on the
same OS and version. Paravirtualization provides more direct access for the applica-
tions to the hardware resources than full virtualization, but not as much as OS virtual-
ization. Paravirtualization thus offers some of the best of both full virtualization and
OS virtualization, with better performance through more direct access to hardware
resources and the ability to support VMs on OSs different from that of the host at the
cost of needing to alter the guest OSs.

 5.2.4 Analysis of VM Coresidency

 A popular use of virtualization technology is to enable several VM instances to share
hardware resources, thereby improving hardware utilization and effi ciency. When it
applies to multiple applications, this is referred to as VM coresidency , that is, multiple
VM application instances residing on the same server. This VM coresidency feature is
leveraged in the popular server consolidation use case. Figure 5.7 illustrates how vir-
tualization enables one to take the applications and software platforms of traditional
system deployments “ A ” and “ B ” and make them coresident on a single hardware
instance via virtualization. Assuming that both applications “ A ” and “ B ” are required
to be operational for service to be available, then one can easily see how server con-
solidation replaces excess server hardware from the reliability block diagram with a
virtualization layer. Assuming that the virtualization layer is more reliable than the

 Figure 5.6. Reliability Block Diagram of Paravirtualization.

OS
Virtualization

Hypervisor

Hardware
Software
Platform Application

Operating
System

Hardware
Software
Platform

Application
�Guest�

Operating
System

Host
Operating

System

•Includes integrated
device drivers for

direct access to hw
resources

•Traditional Configuration

•Virtualized Configuration

98 RELIABILITY ANALYSIS OF VIRTUALIZATION

hardware that is consolidated, service availability is likely to improve because the
failure contribution of one hardware platform has been removed from the critical
service delivery path.

 5.2.4.1 Failure Containment for Coresident Applications. Virtualization also
provides the ability to isolate the two applications so that a failure of one of the appli-
cations does not impact the other. Because of this isolation, the applications still have
their own recovery group as they did in nonconsolidated deployments; if a software
failure occurs that triggers the recovery of the VM even to another server, then coresi-
dent VMs should not be impacted. Of course, a catastrophic hardware or hypervisor
failure will impact all of the coresident VMs; ideally, those affected VM instances will
be migrated to alternate virtualized servers that have spare capacity so the service
impact can be minimized.

 An important characteristic of the different virtualization types is failure contain-
ment, isolating the applications in a virtual environment or VMs so that even though
the application is sharing a host computer, it is not impacted by failures from another
application. All three virtualization types provide failure containment for the VMs
managed by the hypervisor, and allow them to be included in separate recovery groups
from the other VMs. The hypervisor is a key component responsible for the isolation
of the VMs, their access to system resources, and may include an extra layer of high
availability software facilitating the recovery of the VM. It could also be a single point
of failure for the coresident applications, since it manages the use of most if not all of
the hardware resources.

 A failure mode effects analysis of the simplex functional entities included in the
RBD in Figure 5.7 are included Table 5.2 . Failures experienced by a single VM or its
components (application, software platform, and guest OS) are isolated to that VM
instance and can be resolved by rebooting or resetting the failed VM instance. This

 Figure 5.7. Reliability Block Diagram of Coresident Application Deployment.

Hardware
Software
Platform

Application
Operating

System

System
�A�

Hardware
Software
Platform

Application
Operating

System

System
�B�

Hardware
Virtualization

Hypervisor

Software
Platform

�A�

Application
�A�

Operating
System

�A�

Software
Platform

�B�

Application
�B�

Operating
System

�B�

Hypervisor enables independent virtualized
instances of Application �A� and Application

�B� to share a single hardware system.

o
A�

o fo

fo
B�

This hardware platform
is eliminated via server

consolidation�

�Traditional Configuration

�Virtualized Configuration

RELIABILITY ANALYSIS OF VIRTUALIZATION TECHNIQUES 99

should result in recovery of the VM instance or recovery to another instance within its
failure recovery group when redundancy has been confi gured. Common elements, such
as the server, hypervisor, and the host OS (if it exists) will have a potential impact on
all coresident VMs. Failure of the common elements will result in the recovery of those
elements, as well as the impacted VMs. Critical failures may result in the recovery of
the VMs onto another hardware platform.

 5.2.5 Discussion

 Since the three virtualization types have such similar characteristics from a failure
containment, failure management, and recovery point of view, a generic RBD, such as
depicted in Figure 5.8 may be used throughout this book rather than three specifi c ones.

 TABLE 5.2. Failure Mode Effect Analysis Figure for Coresident Applications

 Functional Entity Impact on App “ A ” Impact on App “ B ” Recovery Mechanism

 Hardware Service impact Service impact Restart/recover
hardware

 Hypervisor Service impact Service impact Restart/recover
hypervisor

 Operating system
 “ A ”

 Service impact No impact Restart/recover
virtual machine “ A ”

 Software
platform “ A ”

 Service impact No impact Restart/recover
virtual machine “ A ”

 Application “ A ” Service impact No impact Restart/recover
virtual machine “ A ”

 Operating system
 “ B ”

 No impact Service impact Restart/recover
virtual machine “ B ”

 Software
platform “ B ”

 No impact Service impact Restart/recover
virtual machine “ B ”

 Application “ B ” No impact Service impact Restart/recover
virtual machine “ B ”

 Figure 5.8. Canonical Virtualization RBD.

Virtualization
HypervisorHardware

Software
Platform

Application
�Guest�

Operating
System

Virtualization
HypervisorHardware

Virtual
Machine

(VM)

100 RELIABILITY ANALYSIS OF VIRTUALIZATION

5.3 SOFTWARE FAILURE RATE ANALYSIS

 Critical software failure rate is the most infl uential parameter when considering soft-
ware attributed downtime because it drives how often automatic or manual failure
detection mechanisms and recovery strategies are activated. This section considers
how the application, software platform and guest OS failure rates change when
deployed on a hypervisor, as well as considering the software failure rate of the hyper-
visor itself.

5.3.1 Virtualization and Software Failure Rate

 There are residual defects in all software that will result in software failures given
the execution of particular scenarios under certain conditions. While a particular
piece of application software contains the same residual defects when it is executed
on native or virtualized platforms, virtualized deployments should offer a far smaller
range of confi gured operational profi les for the software than native deployments.
Virtualization decouples application software from specifi cs of the underlying physical
hardware confi guration by presenting a canonical virtualized hardware image to guest
OS, platform, and application software, and the virtualization manager carefully
addresses the particulars of mapping the canonical hardware image presented to guest
OS, platform, and application software to the actual underlying physical hardware
resources. Virtualization in general and hypervisors in particular enable applications
to execute in the same virtualized confi guration regardless of the actual physical
confi guration of the underlying hardware. Note that virtualization enables software
to run on hardware that is nominally faster (e.g., higher clock rate) than the native
hardware, so while differences in execution timing that trigger software errors are
theoretically possible, the virtualization manager should minimize this risk. Thus,
virtualization technology can mask hardware confi guration related residual defects
in application and platform software from being activated because virtualization tech-
nology assures that application and platform software always sees the same canonical
hardware image. The software supplier ’ s system test efforts can thoroughly test against
that canonical hardware image, and the virtualization supplier assures that all deploy-
ments of their virtualization technology should present that same canonical hardware
image to guest OS, application, and platform software, regardless of the specifi cs of
the underlying hardware confi guration. Overall, virtualized application deployments
may experience somewhat lower critical application software failure rates than tra-
ditional deployments.

 At the time of this writing the authors are unaware of published data comparing
the software failure rates of application or platform software on native (nonvirtualized)
confi gurations with execution on virtualized platforms. However, anecdotal data from
experts with signifi cant fi eld deployment of both virtualized and non - virtualized
instances of their application software indicates that the critical software failure rate
of virtualized deployment appears somewhat lower than for native (nonvirtualized)
deployments.

RECOVERY MODELS 101

5.3.2 Hypervisor Failure Rate

 Hypervisors are complex system software modules that are confronted with diverse
requests from VM instances and real - time events from underlying hardware elements.
The latest release plus stability patch loads of massively deployed hypervisors that
support diverse applications on a wide variety of hardware platforms should have few
residual defects provided:

 • The target application and platform software are architecturally similar to other
applications that are broadly and successfully deployed on the hypervisor.

 • The guest OS is supported by the hypervisor and has demonstrated reliable opera-
tion across a very large set of deployments.

 Note that the OS changes required to support paravirtualization increase the risk that
modifi ed OS software may have a slightly higher critical failure rate than unmod-
ifi ed guest OSs. This incremental risk is likely to be modest in early releases of
paravirtualized OSs, and will likely become negligible as specifi c paravirtualized imple-
mentations mature.

5.3.3 Miscellaneous Software Risks of Virtualization and Cloud

 In some cases, the actual application and/or platform software or confi guration may
be different on virtualized deployment compared with native. For example, software
licensing may be implemented differently in virtualized deployment compared with
native deployment, and hence the fundamental software failure rate may be different
between the confi gurations. As virtualization platforms strive to faithfully emulate
native hardware, any variations should be small and thus the extent of different code —
 and hence risk of different residual defects — is likely to be small.

 In contrast to virtualization - related application software differences that are likely
to be minimal compared with native, changes to take advantage of cloud related features
like rapid elasticity (aka, “ autoscaling ”) are likely to require at least a moderate amount
of moderately complex software, and thus increase the risk of software failure; this risk
is considered in detail in Chapter 7 , “ Capacity and Elasticity. ”

5.4 RECOVERY MODELS

 After a critical failure is detected, a recovery action must be automatically or manually
executed to recover user service. This section reviews both traditional recovery options
and virtualized recovery options, and considers the implications.

5.4.1 Traditional Recovery Options

 Traditional systems can support four general recovery models:

 1. Hardware Repair . Hardware failures of nonredundant systems render service
unavailable until hardware can be repaired and software restarted. The mean

102 RELIABILITY ANALYSIS OF VIRTUALIZATION

time to repair (MTTR) hardware is primarily a function of the operational poli-
cies of the enterprise, such as: whether reserve fi eld replaceable hardware is
maintained on - site; whether trained repair staff is available; and what support
arrangements are in place with hardware suppliers. Typical hardware repair
times range from hours to days.

 2. Software Restart . Software failures of nonredundant systems are often recov-
ered by either restarting a process, application software, or restarting the entire
OS and platform software. Typical software restart times are measured in
minutes.

 3. Switchover to Redundant Active Element . Systems that are deployed with
online and “ active ” redundant elements (e.g., load sharing or active/active con-
fi gurations) can recover user service by switching (or redirecting) users to an
online and active redundant element. Service switchover to an online and active
redundant element will have some latency but should be faster than software
restart and far faster than hardware repair.

 4. Switchover to Redundant Standby Element . Some systems are deployed with
redundant units that are not online and actively serving users; these redun-
dant units are said to be in “ standby ” because some actions are necessary to
bring them to full readiness to serve users. It inevitably takes time to bring the
standby element to active status, plus latency to switchover service from the
failed active element to the newly active element. “ Hot ” standby elements will
require time to promote the standby software element to active; “ warm ” standby
elements will also require time to start up the application itself; and “ cold ”
standby elements will require even more time to startup the underlying
hardware platform itself. Thus, switchover to “ hot ” standby elements is often
faster than software restart; switchover to “ warm ” standby elements is often
comparable with software restart time; switchover to “ cold ” standby elements
is signifi cantly slower than software restart, but it is much faster than hardware
repair.

 Figure 5.9 organizes these traditional recovery options on a quasi - logarithmic timeline
by service recovery latency, from switchover to redundant active and hot standby ele-
ments nominally taking seconds (depending on system architecture and confi guration),
to hardware repair taking hours or days (depending on sparing strategy and support
agreements with hardware suppliers).

5.4.2 Virtualized Recovery Options

 Virtualization enables several new redundancy options that are not possible with
traditional deployments; these options generally supplement traditional recovery strate-
gies, like process restart. Virtualized recovery options are best understood in the
context of the DTMF ’ s virtual system state model, which was described in Section 2.4 ,

RECOVERY MODELS 103

 “ Virtual Machine Lifecycle, ” and illustrated in Figure 2.6 . These virtualized recovery
options are:

 • VM Can Be Moved (Offl ine) and Restarted on Different Hardware . Restarting a
VM on a different available server can recover service far faster than the time it
takes to repair failed hardware. This recovery may be manual or automatic. The
likely benefi t of this strategy is discussed in Section 6.9 , “ MTTR of Virtualized
Hardware. ”

 • Virtual System State “ Active ” Redundancy . A traditional “ active ” redundant
element can be mapped into a VM so that both the primary and redundant active
elements are in separate VMs. This is illustrated in Figure 5.10 . Multiple “ active ”
VMs can be confi gured in standard arrangements, like N + K load sharing,
active/standby, and so on. Since it is using the traditional redundancy mecha-
nisms, the resulting system should have essentially the same service availability
characteristics as native deployments. Note that the multiple “ active ” VMs
should be deployed on different virtualized servers to prevent underlying hard-
ware from being a single point of failure.

 • VM Instances Can Be Reset or Rebooted . Virtualization adds the ability to either
reset or reboot a VM instance. Figure 5.11 illustrates VM reboot entailing the
reboot or recycle of the VM while maintaining their allocated resources.
Figure 5.12 illustrates VM reset in which the VM transitions from deactivate to
activate without a corresponding deallocation and reallocation of resources.

 Figure 5.9. Latency of Traditional Recovery Options.

Nominal Recovery
Latency

Hours

Seconds

Traditional Recovery
Options

Hardware Repair

Switchover to �Cold� Standby Element
System Reboot

Switchover to �Warm� Standby Element
Application Restart

Switchover to �Hot� Standby Element
Switchover to Redundant Active Element

104 RELIABILITY ANALYSIS OF VIRTUALIZATION

 Figure 5.10. Traditional Active - Standby Redundancy via Active VM Virtualization.

VS State: active
EnabledState: Enabled

PowerState: On

VS State: defined
EnabledState: Disabled
PowerState: Off-Soft

VS State: active
EnabledState: Enabled

PowerState: On

VS State: paused
EnabledState: Quiesce

PowerState: Sleep-Light

VS State: suspended
EnabledState:

Enabled but Offline
PowerState: Sleep-Deep

Initial State

Final State

Active or hot standby
redundant VM instance is

powered enabled and ready
to initiate recovery actions

instantly
Active Unit

Standby Unit

 Figure 5.11. Reboot of a Virtual Machine.

VS State: defined
EnabledState: Disabled
PowerState: Off-Soft

VS State: active
EnabledState: Enabled

PowerState: On

VS State: paused
EnabledState: Quiesce

PowerState: Sleep-Light

VS State: suspended
EnabledState:

Enabled but Offline
PowerState: Sleep-Deep

Initial State

Final State

Deactivate

Activate

�or via �reboot�
which redefines the
VM instance before

reinitializing �active�
state

RECOVERY MODELS 105

 • Paused VM Instances Can Be Activated . Redundant VM instances can be allo-
cated, application software made ready, and then the VM instance can be paused;
these paused VM instances can be activated and made available instantly to
recover service when necessary. As shown in Figure 5.13 , paused VM instances
are sleeping “ lightly ” so there is additional service recovery latency compared
with active VM redundancy, but fewer platform (e.g., CPU) resources are con-
sumed to maintain paused VM ’ s nearly online than for online active VM instances.
Note that paused redundant VM instances should be hosted on different virtual-
ized server platforms from the active instances to prevent the virtualized server
platform from becoming a single point of failure.

 • Suspended or Snapshot VM Instances Can Be Activated . Redundant VM
instances can be allocated, application software made ready, and then the VM
can be suspended or snapshot. Redundancy can be provided by suspended or
snapshot VM instances that can be activated when required. As shown in Figure
 5.14 , suspended VM instances are sleeping “ deeply ” so there is more incremental
recovery latency compared with paused VM redundancy, and signifi cantly more
latency compared with active VM redundancy, however even fewer virtualized
platform resources are consumed to support suspended VM redundancy. Note
that suspended redundant VM instances should be hosted on different virtualized
server platforms from the active instances to prevent the virtualized server plat-
form from becoming a single point of failure.

 Figure 5.12. Reset of a Virtual Machine.

VS State: defined
EnabledState: Disabled
PowerState: Off-Soft

VS State: active
EnabledState: Enabled

PowerState: On

VS State: paused
EnabledState: Quiesce

PowerState: Sleep-Light

VS State: suspended
EnabledState:

Enabled but Offline
PowerState: Sleep-Deep

Initial State

Final State

Non-redundant instances can
be recovered via �reset�
which reinitializes the

�active� state�Reset

106 RELIABILITY ANALYSIS OF VIRTUALIZATION

 Figure 5.13. Redundancy via Paused VM Virtualization.

VS State: defined
EnabledState: Disabled
PowerState: Off-Soft

VS State: active
EnabledState: Enabled

PowerState: On

VS State: paused
EnabledState: Quiesce

PowerState: Sleep-Light

VS State: suspended
EnabledState:

Enabled but Offline
PowerState: Sleep-Deep

Initial State

Final State

Paused VM instance is
activated to recover service

for failed VM instance.

Activate

 Figure 5.14. Redundancy via Suspended VM Virtualization.

VS State: defined
EnabledState: Disabled
PowerState: Off-Soft

VS State: active
EnabledState: Enabled

PowerState: On

VS State: paused
EnabledState: Quiesce

PowerState: Sleep-Light

VS State: suspended
EnabledState:

Enabled but Offline
PowerState: Sleep-Deep

Initial State

Final State

Suspended (or snapshotted)
VM instance is activated to
recover service from failed

VM instance.

Activate

RECOVERY MODELS 107

 When a paused or suspended VM is activated, the activated VM instance resumes
with the same system state that it had at the instant it was paused or suspended. This
system state is inevitably different from the state of the VM instance that later crashed,
and thus system state must be refreshed, recovered, or rebuilt by either the activated
VM instance, or the service clients, or by both VM instance and clients. While some
state recovery or rebuilding may be required with either traditional or active VM redun-
dancy, the fact that those redundant instances are nominally executing offers the pos-
sibility for those redundant instances to proactively retrieve or recover fresher service
status.

 5.4.3 Discussion

 Figure 5.15 overlays the nominal recovery latency of virtualized recovery options to
the right of the traditional recovery options from Figure 5.9 . Although this is intended
as a qualitative visualization rather than a quantitative analysis, virtualized recovery
options do offer somewhat different recovery latencies than what is typically offered
by traditional recovery options.

 Note that virtualized redundancy may introduce an implicit single point of failure
risk not found in traditional deployments if redundant VM instances are served by the
same hypervisor instance. Virtualization implicitly breaks the linkage between VM
instances and the hardware that supports them, and thus by default, redundant VM
instances for a particular application might be mapped to a single physical virtualized
server, thereby making that physical server a single point of failure for that particular
application at that particular time. It is essential to ensure that redundant VM instances
are not hosted on the same hypervisor or physical server. This can be done through
affi nity rules as discussed in Section 11.1 , “ Architecting for Virtualization and Cloud. ”

 Figure 5.15. Nominal Recovery Latency of Virtualized and Traditional Options.

Nominal Recovery
Latency

Hours

Seconds

Traditional Recovery
Options

Virtualized Recovery
Options

Hardware Repair

Switchover to �Cold� Standby Element
System Reboot

Switchover to �Warm� Standby Element
Application Restart

Switchover to �Hot� Standby Element
Switchover to Redundant Active Element

Move VM to Different Hardware

VM Reboot
VM Reset
Activate Suspended VM
Activate Paused VM

Switchover to VIRTUAL �Hot� Standby
Switchover to VIRTUAL Redundant Active

108 RELIABILITY ANALYSIS OF VIRTUALIZATION

5.5 APPLICATION ARCHITECTURE STRATEGIES

 There are several common high level architectural patterns that are used in some tra-
ditional environments but have special meaning when applied to virtualized and cloud -
 based applications. This section reviews the following common patterns and considers
the reliability characteristics of each:

 • on - demand single - user model;
 • single - user daemon model;
 • multiuser server model; and
 • consolidated server model.

5.5.1 On-Demand Single -User Model

 The simplest and most common architectural pattern is the on - demand single - user
model in which an application instance is spawned exclusively for the use of that single
user. Once spawned on user request, the application instance runs until the user explic-
itly terminates (e.g., closes) the application instance. Most applications running on
 personal computer s (PC s) and Smartphones follow this pattern, such as browsers, word
processors, games, and so on. Desktop as a service follows this architectural pattern.
A virtualized desktop application instance is spawned on user request and remains
operational until the user terminates the instance.

 In the single - user model, the extent of all failures is limited to the individual user
who requested the application, and thus a single failure should never impact more than
a single user, meaning that there is no notion of partial capacity outages. Each individual
application instance should be independent, that is, a failure of one single user ’ s appli-
cation should not impact service offered by another user application instance.

 Because the application is explicitly started and stopped on user request, an appli-
cation instance is likely to be offl ine for the majority of any weekly, monthly, or other
measurement period. Thus, traditional service availability metrics (e.g., Availability
= Uptime/[Uptime + Downtime]) are not generally useful because they do not ade-
quately account for offl ine time. Instead, accessibility and retainability metrics should
be used to characterize application availability. For an on - demand single user applica-
tion, accessibility is the probability that a user ’ s request to launch the application will
successfully create an operational application instance within a maximum acceptable
time (e.g., seconds), and retainability is the probability that an application instance will
remain operational until the user explicitly terminates the instance. Accessibility impair-
ments are generally either transient, meaning that a second (or third) attempt to spawn
the application will succeed, or persist meaning that the application will not spawn
correctly until the root cause of the failure has been corrected. While a statistical mea-
surement that considers the probability of transient accessibility failures is interesting,
there is little point in considering the accessibility when the application experiences a
persistent failure because accessibility will be nil until the root cause of the failure has
been corrected. Operationally, retainability captures the probability that the application

APPLICATION ARCHITECTURE STRATEGIES 109

will not crash during a session, and this is likely to be a key service metric for on -
 demand single users.

5.5.2 Single-User Daemon Model

 This application pattern assigns a persistent VM instance to a single object or logical
user, and that persistent application instance is expected to be continuously available.
For example, if control software for a wireless base station is virtualized and moved
into the cloud (thereby reducing the hardware resources that are required to be deployed
to remote, unstaffed outdoor locations), then the cloud - based control function for each
individual base station may become a single - user daemon application. One VM instance
is uniquely associated with a particular physical object (a wireless base station in this
example); the number of VM instances grows and shrinks with the number of objects
of interest. When one VM instance fails, a single object is impacted, and the VM
instance should be automatically recovered as quickly as possible. Availability is a
primary service metric for single - user daemon deployments. It is easily computed by
comparing the cumulative object down - minutes in the measurement period across the
population of VMs to the total number of minutes in the measurement period multiplied
by the number of VMs. Service reliability and service latency are also useful metrics.
Service accessibility and service retainability are not particularly interesting.

5.5.3 Multiuser Server Model

 Multiuser server is the canonical architecture model for traditional application servers.
Each application server instance can handle a variable but fi nite workload of work and/
or set of active users. Traditional application instances have a fi xed maximum engi-
neered capacity, but the cloud ’ s rapid elasticity characteristic means that applications
are expected to grow horizontally, vertically, and/or out as load increases. As load
shrinks, multiuser server applications are expected to gracefully release unneeded
resources.

 Service reliability, service latency, service accessibility, and service retainability
are good metrics for multi user server. As explained in Section 13.7.1 , “ Cloud Service
Measurements, ” service availability is sometimes an awkward metric for cloud - based
multi - user server applications because it is often hard (or impossible) to know the true
extent of service impact — as opposed to duration of service impact — because the
number of impacted application users varies across time.

5.5.4 Consolidated Server Model

 One of the most common use cases of virtualization is the consolidated server model
in which multiple applications or application instances share the same physical server.
The applications are referred to as coresident applications and are discussed in Section
 5.2.4 , “ Analysis of VM Coresidency. ”

 The following fi gure indicates how multiple applications each on its own hardware
component can become coresident through virtualization:

110 RELIABILITY ANALYSIS OF VIRTUALIZATION

 With virtualization (as depicted in Figure 5.16), server consolidation is supported
by creating a VM for each application, including its OS. Each VM will act like a sepa-
rate computer. The hypervisor manages the complexity of the coresident applications
by monitoring the Guest OSs and determining how the resources are allocated to the
VMs. There are no changes needed to the Guest OSs. The hypervisor will provide all
of the hardware interfaces for the VMs.

 Since virtualization supports the containment of failures to the individual VMs, if
a failure occurs on one VM, the other VMs residing on the same server will not be
impacted. However, failures associated with the hardware or virtualization platform
will likely impact all VMs on that server.

 Traditional service availability calculations are still relevant. Product availability
calculations will be based on the VM instances that comprise the product and do not
then include other coresident VMs. Service reliability, service latency, service acces-
sibility, and service retainability are good metrics for the consolidated server model.

 5.6 AVAILABILITY MODELING OF VIRTUALIZED
RECOVERY OPTIONS

 At the highest level, systems are deployed either:

 • Simplex (or standalone) with no redundant instances allocated or confi gured prior
to failure.

 • Redundant with suffi cient resources pre - allocated to promptly recover service
following failure.

 Figure 5.16. Server Consolidation Using Virtualization.

Application

A

Application

B

OS A OS B

Hypervisor

Host OS

Application

A

Application

B

Guest OS A Guest OS B

Hardware
Server Consolidation

via Virtualization

Hardware Hardware

AVAILABILITY MODELING OF VIRTUALIZED RECOVERY OPTIONS 111

 Mathematical modeling is commonly used to estimate the feasible and likely avail-
ability of system architectures. This section considers how service availability of both
simplex and redundant system confi gurations is likely to be impacted by the use of
virtualization.

 5.6.1 Availability of Virtualized Simplex Architecture

 Conventional (vs. highly available) systems are deployed simplex, meaning that a
single nonredundant operational unit is available to provide each critical function sup-
porting a service. A single, simplex unit has two well - known operational states, shown
in Figure 5.17 :

 1. Up , or working, in which the system is known to be operational.

 2. Down , or failed, in which the system is known to be nonoperational, and pre-
sumably repair or replacement is planned.

 As explained in Section 3.3 , “ Service Availability, ” service availability is uptime
divided by uptime plus downtime (Availability = Uptime/[Uptime + Downtime]), so
availability of simplex systems can be improved in two general ways:

 1. reducing failure rate; and

 2. shortening recovery time.

 5.6.2 Availability of Virtualized Redundant Architecture

 Highly available systems are designed to automatically detect, isolate, and recover from
any single failure. To achieve the fastest possible recovery, service is often restored
onto redundant modules that are either active or in standby and ready to rapidly recover
service from a failed module. In some cases, the entire element may be duplicated, such
as having two identical jet engines on an airplane. High availability systems are built
by architecting redundant arrangements of all critical modules so that no single unit
failure will necessarily produce a service outage.

 Figure 5.17. Simplifi ed Simplex State Diagram.

UP DOWN

System Fails

System Recovered

112 RELIABILITY ANALYSIS OF VIRTUALIZATION

 Fundamentally, redundant pairs of components can either share the load across
both elements (called “ active – active ”) or have one unit actively serving load while the
redundant unit waits in standby (called “ active – standby ”). In both of these cases, failure
of a unit actively serving load (i.e., “ active ” unit in “ active – standby ” arrangements, or
either unit in “ active – active ” arrangements) will impact service availability at least
momentarily. The service impact can be simply modeled by considering fi ve factors
shown in Figure 5.18 : critical failure rate, failure coverage, failure detection latency,
switchover latency, and switchover success probability. The following sections consider
how virtualization impacts each of these characteristics, and then discusses the overall
implications

 5.6.3 Critical Failure Rate

 Critical failure rate is the rate of service - impacting failure events. As discussed in
Section 5.3 , “ Software Failure, ” we assume that the critical failure rate of the host OS
and application and platform software is roughly the same for virtualized and native
deployments. Virtualization introduces a hypervisor software, and perhaps a host OS,
that is not present in native deployments; this complex software will inevitably con-
tribute some failures, but the maturity and massive deployment of this software suggests
that this incremental software failure rate attributable to the hypervisor and host OS
should be signifi cantly less than from the application software. Chapter 6 , “ Hardware
Reliability, Virtualization, and Service Availability, ” considers hardware reliability in
detail and observes that hardware failure rates are likely to be equivalent for both tra-
ditional and virtualized application deployments.

 Figure 5.18. Downtime Drivers for Redundancy Pairs.

Redundant Pair

Active

Redundant

Downtime across a redundant pair is
primarily driven by�

Active

Critical failure rate is a highly influential
parameter.

Failure coverage (highly influential parameter)
is the probability that the system rapidly and

automatically detects the failure

Switchover latency is an influential parameter.
If less than outage exclusion threshold, then

downtime �vanishes�

Switchover success probability is an influential
parameter

Failure detection latency (influential
parameter) is the time it takes to detect a
failure and activate a recovery mechanism

AVAILABILITY MODELING OF VIRTUALIZED RECOVERY OPTIONS 113

5.6.4 Failure Coverage

 Failure coverage is the probability that the system will rapidly detect and correctly
isolate a critical failure to the appropriate recoverable module. Failure coverage is
driven by the effi cacy of failure detection, which is detailed in Section 3.6 , “ Redun-
dancy and High Availability. ” Software failure coverage for application software, soft-
ware platform, and guest OS should be the same in native and virtualized deployment.
Hardware coverage is primarily the responsibility of the “ guest ” OS and the application
platform in native deployments, and of the host OS and hypervisor in virtualized
deployments. Mature and high - quality OS, platform, and hypervisor software should
achieve comparable levels of hardware failure coverage.

 Rapid and reliable detection of failures is the fi rst step in the activation of
high availability mechanisms. Software failures of guest OS, platform, or application
software in a virtualized deployment should be detectable via the same mechanisms
used for native deployments; however, there may be an increased latency in fault detec-
tion and recovery based on resource sharing effi cacy. While the hypervisor might
explicitly see software - triggered processor exceptions like divide by zero events, these
exceptions should be caught and addressed by the guest OS, platform, or application
software, so there should be no material difference in the effi cacy of software failure
detection.

5.6.5 Failure Detection Latency

 Failure detection latency is the time it nominally takes the system to automatically
detect and correctly isolate a critical failure. Nominal failure detection latency is often
related to the failure detection strategy and mechanism. Some failures will be detected
synchronously and automatically, such as when the OS raises a processor exception for
access to an illegal memory address or throws a signal on death of child process. Other
failures are detected asynchronously, such as during periodic integrity scans of data
structures, like shared memory. Failure detection latency is infl uenced by confi gured
parameters, like heartbeat time outs, maximum retry counts, frequency of integrity
audits, and so on. Assuming that similar or identical detection - related settings are con-
fi gured on virtualized deployments as on native deployments, failure detection latency
should be similar for both.

5.6.6 Switchover Latency

 Switchover latency is the time it takes for the system to recover service onto the redun-
dant unit and is driven by the redundancy strategy used to mitigate the failure. Strategies
where the redundant unit is active naturally have shorter switchover latencies because
the redundant unit need not take time to bring itself to full operational readiness. Hot
standby has shorter switchover latency than warm standby; warm standby has shorter
switchover latency than cold standby. Additional latency might be consumed if it is
necessary to activate a paused or suspended VM instance, or if VM instances must be
created and initialized to complete the recovery.

114 RELIABILITY ANALYSIS OF VIRTUALIZATION

5.6.7 Switchover Success Probability

 Switchover success probability is the probability that an automatic switchover will
successfully restore service in the nominal automatic switchover latency. Note that in
fi eld deployments (and hopefully in lab testing), automatic switchovers are initiated
following a critical failure that has driven part of the system into an ill - defi ned or
undefi ned state. Thus, automatic switchover must be fast and reliable even when it is
recovering service that may have been left in a messy state. Switchover success prob-
ability is infl uenced by the architecture, implementation, and testing of the redundancy
strategy and recovery model. Activating paused or suspended VM instances increases
the risk of switchover failing by adding a level of complexity to the action.

5.6.8 Modeling and “Fast Failure ”

 Common software engineering guidance is to “ fail fast, ” meaning that it is often better
to initiate automatic recovery actions when one is fairly sure something has failed (e.g.,
 “ the preponderance of evidence ”) rather than waiting longer until one is absolutely sure
(e.g., “ beyond a shadow of doubt ”). After all, a false positive (triggering recovery when
system had not actually failed) is generally preferable to a false negative (silent or
sleeping failure in which the system is unavailable but no action recovery action is
taken because there is no indication there is a failure). In fact, the bulk of predicted
downtime comes from these false negative situations, since the failure is not recognized,

 TABLE 5.3. Comparison of Nominal Software Availability Parameters

 Parameter

 How Does Value Nominally
Compare for Virtualized

and Native Deployments? Comments

 Software failure
rate

 Same to slightly better Virtualization should assure a narrower
operational profi le for production
software, thereby reducing the risk of
residual defects

 Software failure
coverage

 Same Same failure detection mechanisms are
used in both native and virtualized
environments.

 Failure detection
latency

 Same Same failure detection mechanisms are
used in both native and virtualized
environments.

 Switchover
latency

 Different Switchover latency depends on
characteristics of selected traditional or
virtualized recovery strategy.

 Switchover
success
probability

 Different Switchover success probability depends
on characteristics of selected traditional
or virtualized recovery strategy.

AVAILABILITY MODELING OF VIRTUALIZED RECOVERY OPTIONS 115

and thus downtime — and user dissatisfaction — accrues until extraordinary actions (e.g.,
angry calls from end users) alert the maintenance engineers to the failure so recovery
actions can be initiated.

 This common - sense advice is modeled via the combination of failure detection
latency and failure coverage that together represent the portion of failures that are suc-
cessfully detected within the nominal detection latency. While it is infeasible to detect
100% of all failures in 0 milliseconds, the “ fail fast ” guidance reminds engineers to
strive for that goal.

5.6.9 Comparison of Native and Virtualized Deployments

 Table 5.3 gives a side - by - side comparison of how key reliability parameters change
when application software is deployed on a virtualized platform compared with a native
deployment. Software failure rate should be no worse for the virtualized platform, and
may be slightly better. Software failure detection coverage and failure detection latency
should be essentially the same for both deployment scenarios because the same mecha-
nisms are used in both confi gurations. Switchover latency and switchover success
probability are where availability predictions may differ because different virtual-
ized and native recovery strategies can have signifi cantly different performance
characteristics.

 Thus, virtualization permits new cost - effective redundancy options that enable
applications to achieve service availability of traditional architecture and deployment
options.

116

 This chapter assesses how hardware reliability considerations change for applications
deployed on a virtualized platform compared with the same application natively
deployed on hardware (i.e., no hypervisor). The chapter begins by reviewing hardware
downtime expectations and the basics of hardware failures. The chapter then considers
the impact of virtualization, especially the server consolidation use case, on hardware
failure rates. We then consider limitations on containment and the risk of a cascade
of hardware failures in virtualized confi gurations. Next, a review of the fundamental
recovery strategies that can be used to mitigate hardware failure events is presented.
The chapter concludes with a discussion summarizing how hardware failures of virtual-
ized platforms impact service availability.

6.1 HARDWARE DOWNTIME EXPECTATIONS

 Traditionally, service availability expectations of applications (e.g., “ fi ve 9 ’ s ”) took into
account downtime attributed to hardware, software and procedural (a.k.a., human)
failures. While virtualization decouples application software from the underlying hard-
ware, it does not eliminate the hardware attributed downtime; hardware still fails, and

6
HARDWARE RELIABILITY,

VIRTUALIZATION, AND SERVICE
AVAILABILITY

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

HARDWARE FAILURES 117

automatic or manual actions must be taken to recover service following failure. To
achieve a hardware downtime target, the hardware failure rate must be suffi ciently low,
and the probability of rapid failure detection and successful service recovery must be
suffi ciently high so that the long - term, annualized, prorated service downtime across a
population of system attributed to hardware does not exceed the target value. As
explained in Chapter 5 , “ Reliability Analysis of Virtualization, ” mathematical modeling
combines quantitative estimates of key parameters to estimate the feasible and likely
service downtime.

6.2 HARDWARE FAILURES

 Hardware is susceptible to a variety of failure modes, including:

 • Random failures from manufacturing defects, such as poor solder joints;
 • Time - and temperature - dependent (aka, wear out) failures, such as electro migra-

tion that dissolves metal connections into surrounding silicon or dielectric break-
down of gate oxide, or which causes the breakdown or loss of physical properties
over time or use.

 • Corrosion from gases like H 2 S and H 2 SO 4 .
 • Hydrophilic dust that accumulates on hardware components and assemblies,

absorbs water and electrically shorts pins.
 • Soft (i.e., nonpersistent) bit errors from cosmic rays or alpha particles.
 • Electrical or thermal overstress.
 • Damage during shipping.

 Reliability qualifi cation, electrical and thermal derating of components, robust design -
 for - manufacturing guidelines, highly accelerated life or design environmental stress
testing, diligent factory testing, and other techniques should minimize the rate of hard-
ware faults throughout the hardware ’ s designed service life. Nevertheless, hardware
failures will occur, and thus systems must rapidly detect and isolate hardware failures
so that system software can activate appropriate recovery actions.

 Practical hardware error scenarios to consider are:

 • Processor Failure . Complex and highly integrated devices like microprocessors,
digital signal processors, network processors, fi eld programmable gate arrays,
and so on are critical to hardware functionality and are often more susceptible
to wear out due to environmental - related effects. For example, weak thermal
design and elevated ambient temperatures can cause a high - performance proces-
sor to run with excessive junction temperatures, thus accelerating time - and
temperature - dependent failure modes, which lead to premature failure.

 • Disk Failure . Hard disk drives are built around high - performance spinning plat-
ters and moving magnetic heads. Over time moving parts (e.g., lubricated bear-
ings) will wear and eventually fail. Although hard disks may have low random

118 HARDWARE RELIABILITY, VIRTUALIZATION, AND SERVICE AVAILABILITY

failure rates during their designed service life, their service lifetime is often
shorter than the designed lifetime of the system electronics, and thus hard disks
may fail and require replacement before the system ’ s electronics has reached the
end of its useful service life.

 • Power Converter Failure . Board - mounted power modules are used to convert
voltages provided on the system ’ s backplane to the voltages required by devices
on the board itself. As these compact devices inherently dissipate high power
and run hot, they tend to have appreciable hardware failure rates; failure of a
power converter impacts power delivery and thus renders impacted hardware
inoperable.

 • Clock Failure . Oscillators drive the clocks that are the heartbeat of digital
systems. Clock failure will impact (and likely disable) the circuitry served by the
clock.

 • Clock Jitter . In addition to hard (persistent) clock failures, the clock signal pro-
duced by an oscillator can jitter or drift. Clocks tend to drift as they age for a
variety of reasons, including mechanical changes to crystal connections or move-
ment of debris onto crystal. This jitter or drift can cause circuitry served by one
oscillator to lose synchronization with circuitry served by another oscillator, thus
causing timing or communications problems between the circuits.

 • Switching/Ethernet Failure . These devices enable IP traffi c to enter and leave
the hardware unit, and thus are critical.

 • Memory Device Failure . Memory devices are typically built with the smallest
supported manufacturing line geometries to achieve the highest storage densities.
In addition, many systems deploy large numbers of memory devices to support
large and complex system software. Dynamic RAM is susceptible to soft bit
errors; FLASH memory devices wear out with high write voltages, and over long
time periods can lose data.

 • Parallel or Serial Bus Failure . High - speed parallel and serial busses are very
sensitive to electrical factors like capacitance and are vulnerable to crosstalk.

 • Transient Failure or Signal Integrity Issue . Weak electrical design or circuit
layout can lead to stray transient signals, crosstalk, and other impairments of
electrical signals. As these issues are transient rather than persistent, they are
often diffi cult to debug.

 • Application - Specifi c Component Failure . Application - specifi c components like
optical or radio frequency devices may be more failure prone because of small
device geometries, high power densities, and newness of technology or manu-
facturing process. Components like fans, aluminum electrolytic capacitors, and
batteries are also subject to wear out.

 All of these fundamental error scenarios are applicable to hardware regardless of
whether applications are executing natively on the hardware or if a hypervisor is vir-
tualizing the application ’ s access to the hardware. Thus, the key hardware downtime
questions to consider are:

HARDWARE FAILURE RATE 119

 1. Does virtualization impact the rate of hardware errors/failures?

 2. Does virtualization impact the latency or effectiveness of hardware failure
detection?

 3. Does virtualization impact containment of hardware failures?

 4. Does virtualization impact the latency and effectiveness of service recovery
from hardware failures?

 5. Can virtualization itself mitigate the impact of hardware failures?

 These questions are addressed in the remainder of this chapter.

6.3 HARDWARE FAILURE RATE

 Hardware failure intensities, or rates, follow the so - called “ bathtub ” curve, which fea-
tures three phases:

 • infant mortality phase when weak units fail or due to manufacturing defects;
 • useful service life phase when random hardware failures occur at a fairly constant

rate that is nominally below the predicted hardware failure rate; and
 • wear - out phase in which failure rates increase until all units in the population

eventually fail.

 Given this “ bathtub ” behavior, the hardware failure rate questions are:

 1. Are virtualization and cloud operational characteristics likely to shorten the
useful service life time of hardware elements and cause wear out failures to
begin prematurely?

 2. Are virtualization and cloud - related factors likely to increase the random hard-
ware failure rate during the useful service life of hardware elements?

 These two questions are visualized in Figure 6.1 .
 Failures are primarily driven by thermal, voltage, and current stress, as well as

mechanical vibration. For example, components that run hotter (e.g., semiconductor
devices with higher junction temperatures) tend to wear out faster than devices operated
at lower junction temperatures. Hardware failure rates for virtualized and cloud deploy-
ments may be somewhat higher, and useful service life somewhat shorter than for
traditional, native deployments because of increased stress on hardware components
due to:

 1. Increased Hardware Utilization Reduces the Time Components Engage
Power Management Mechanisms to Reduce Thermal Stresses . Server consoli-
dation and increased hardware resource utilization are primary motivations for
deploying virtualization, and increased utilization can both increase the duty
cycle of hardware components and reduce the opportunities to engage power

120 HARDWARE RELIABILITY, VIRTUALIZATION, AND SERVICE AVAILABILITY

management technologies that can reduce electrical and thermal stress on com-
ponents. For example, some modern processors include advanced power man-
agement that slows clock speeds to reduce power consumption — and heat
generation, hence thermal stress — when the processor is lightly loaded. While
traditional servers are often very lightly loaded so that power management
mechanisms can engage to reduce thermal stress on components, server con-
solidation and cloud deployments are likely to keep systems at much higher
workloads to minimize capital expense and operating expense, thereby making
it less likely that power management will activate; thus devices are more likely
to endure higher thermal stress. Therefore, higher hardware resource utilization
via server consolidation may both increase the hardware failure rate during the
useful life period, as well as accelerate the onset of the wear - out phase, which
reduces the useful service life of hardware elements.

 2. Increased Thermal Stress Due to Elevated Ambient Temperatures in Data
Centers . To reduce operating expense for power, data center operators —
 including cloud service providers — may increase the ambient temperature in
their data centers, which reduces their cooling load and hence power consump-
tion. Higher ambient temperatures increase thermal stress on hardware compo-
nents, regardless of whether they are virtualized or traditional systems.

 3. Reduced Derating Rules and Design Margins by Hardware Suppliers to Reduce
Costs . Virtualization ’ s ability to decouple software from the underlying hard-
ware combined with the massive scale and homogeneity are common charac-
teristics that tempt many traditional and cloud computing data center owners
to deploy less expensive commodity hardware. Performance can sometimes
be boosted (or component costs reduced) by reducing design margins, such
as operating components closer to or at their maximum rated values for

 Figure 6.1. Hardware Failure Rate Questions.

Time

Ha
rd

w
ar

e
Fa

ilu
re

 R
at

e

Useful Service Life Phase
Infant Mortality

Phase Wear Out Phase

Predicted
Hardware

Failure Rate

Will random
hardware failure

rate increase?

Will useful
service life
decrease?

HARDWARE FAILURE DETECTION 121

temperature, voltage, and current. Commodity hardware suppliers may adopt
less conservative derating and design rules, driving components closer to their
design limits to reduce component costs and/or to boost performance, and
thereby increasing stress on components.

 4. Increased Duty Cycle on Hard Disk Drives and Other Components . Server
consolidation in particular and cloud computing in general strive to increase
hardware utilization rates by squeezing the maximum value out of the capital
investment in hardware resources. Increased duty cycle can accelerate aging of
hardware components like hard disk drives. Higher usage of hard disk drives
can increase vibration and hence mechanical stress.

 Interestingly, a study by Microsoft of hardware reliability in their cloud computing data
centers [Vishwanath] reported the surprising observation that “ the age of the server, the
confi guration of the server, the location of the server within a rack [owing to temperature/
humidity gradient within rack we might have expected different failure characteristics],
workload run on the machine, none of these were found to be a signifi cant indicator of
failures . ” Thus, cloud deployment might not impact hardware failure rates as much as
one might expect, but further research is necessary.

6.4 HARDWARE FAILURE DETECTION

 Hardware failures are detected either synchronously when the resource is accessed
during normal operation (e.g., hardware component returns an error code or raises an
error interrupt) or asynchronously during execution of a periodic hardware audit routine.
Since the hypervisor and host operating system (OS) (if present) should have access to
the same hardware visibility mechanisms and essentially the same software drivers as
the guest OS, hardware error and failure detection by the virtualized platform should
theoretically be comparably effective to native detection by the native OS in nonvirtual-
ized system confi gurations.

 Theoretically, virtualized platforms might have more effective hardware failure
detection capabilities because a hardware failure can be detected when executing any
one particular virtual machine (VM) instance running on the physical hardware, and
thus the hardware failure may be known to the virtualization platform before other VMs
are exposed to the hardware failure, thereby creating opportunities for proactive hard-
ware failure detection. The practical question then becomes: if the guest OS, platform
or application software running in a VM instance detects a hardware failure, then is
there a mechanism to signal the hypervisor of the hardware failure so the hypervisor
can initiate failure mitigation actions?

 Note that since virtualization introduces an additional layer of platform software
(i.e., the hypervisor), real - time notifi cation of hardware failure may be slightly slower
than in native confi gurations, especially if multiple VM instances are affected and need
to be alerted.

122 HARDWARE RELIABILITY, VIRTUALIZATION, AND SERVICE AVAILABILITY

6.5 HARDWARE FAILURE CONTAINMENT

 Good hardware design assures that hardware failure of one fi eld replaceable unit should
not cause hardware failure of another hardware unit. For example, the failure of a
processor or electronic component on one rack - mounted server or compute blade
should not cascade to cause adjacent or nonadjacent server or blade hardware to fail.
However, the fundamental nature of the server consolidation use case means that by
default, a single hardware failure will be presented to every VM instance that runs on
the hardware until the hardware failure is repaired. Thus, although good hardware
design assures that the hardware failure will not cascade to other hardware elements,
virtualization inherently presents the risk that a hardware failure will be impressed upon
all active VM instances associated with the failed hardware until the hardware failure
is mitigated and eventually repaired. Note that this is also an issue with nonvirtualized
multitenancy architectures.

6.6 HARDWARE FAILURE MITIGATION

 Hardware failures are traditionally mitigated by either switching service from the failed
hardware resource to a redundant hardware resource or by replacing or repairing the
failed hardware and restarting the software. To maximize service availability a redun-
dant application instance will be online on a redundant hardware resource and will
be ready to serve users immediately (e.g., active/active or active/hot standby), but other
traditional (e.g., active/warm standby and active/cold standby) and virtualization -
 related redundancy arrangements (discussed in Section 5.4 , “ Recovery Models ”) are
possible.

 To mitigate further service impact due to the hardware failure, once the virtualiza-
tion platform/hypervisor detects the underlying hardware failure, it should stop accept-
ing requests to create new VM instances on the failed hardware. Fundamentally,
preexisting VM instances associated with hardware that is believed to have failed but
which have not yet experienced the failure can be addressed via one of the following
strategies:

 • Virtualized platform mitigates hardware failure. It is theoretically possible for
the hypervisor, host OS, or other components supporting VM instances (e.g.,
RAID) to detect and mitigate some hardware failures, thus masking the underly-
ing hardware failure from the VM instances. For example, it is possible to imple-
ment LAN bonding across a pair of physical NICs in the host OS so that the
failure of an individual NIC need not be exposed to VM instances across the
virtualized NIC interface. This is discussed further in Section 6.7 , “ Mitigating
Hardware Failures via Virtualization. ”

 • VM instances run to the point of failure (typically the default behavior). The
hardware failure is implicitly or explicitly presented directly to running VM
instances where the guest OS, platform, and application software is fully exposed
to the hardware failure. At some point, the VM instance software will probably

HARDWARE FAILURE MITIGATION 123

experience the hardware failure, and service will be impacted. After the VM
instance fails, the virtualization platform should start a new VM instance on fully
operational hardware.

 • Hypervisor stops vm instances to (implicitly) activate application - level high
availability mechanisms. If the hypervisor detects the hardware failure or is noti-
fi ed of the hardware failure by a VM through an API, then it can decide not to
risk running the VM instances to the point of failure. Instead, the hypervisor can
stop (e.g., pause) VM instances tied to impacted hardware, thereby mimicking a
catastrophic software failure. This action should cause each application ’ s HA
mechanism (if implemented) to activate and rapidly recover application service
to a redundant application VM instance.

 • Hypervisor stops VM instances and activates virtualization platform/hypervisor
high availability mechanisms . If the hypervisor detects the hardware failure, then
it can elect not to risk running the VM instances to the point of failure, and
destroy the VM instances associated with the impacted hardware, create new VM
instances on fully operational hardware, and boot the applications into the new
VM instances.

 • Hypervisor live (online) migrates VM instances to other virtualized platform
hardware instances. For each VM instance, if the hypervisor (1) detects the
hardware failure, (2) deems that a VM instance has not been compromised by
the failure event, and (3) the hardware is suffi ciently operational, then the hyper-
visor can theoretically attempt live migration of the VM instance to fully opera-
tional hardware. This technique presents four fundamental risks:
 1. Availability of hypervisor may be compromised . The hardware failure may

have compromised the hypervisor ’ s state and/or its ability to correctly execute
any recovery actions.

 2. VM instance may have already been compromised , so migration risks pro-
longing the period of service impact since cascaded software failures will
be separately detected, isolated, and recovered, inevitably extending the
period of service impact. In addition to the service disruption period experi-
enced during live migration, the compromised VM instance image will
likely eventually run to failure on the other hypervisor. Thus, it would have
been easier and faster to restart the application instance promptly once the
hardware is operational rather than migrating the damaged software and
then having to restart the application once the failure has occurred after the
migration.

 3. Live migration may be so slow that application - level HA mechanisms activate ,
and thus the migrated VM instance will end up fi ghting with the redundant
application instance(s) that are attempting to take over the service for the
impacted VM instance. Competing application instances increase the risk of
slower or unsuccessful service recovery.

 4. Live migration of VM instance may be unsuccessful , and thus the opportunity
costs of time and resources of the attempted live migration are wasted. The
virtualized platform/hypervisor will still have to create a new VM instance

124 HARDWARE RELIABILITY, VIRTUALIZATION, AND SERVICE AVAILABILITY

on fully operational hardware, and application - level HA mechanisms will
activate, if available.

 Thus, live migration is not generally a feasible option to mitigate hardware failure.

 6.7 MITIGATING HARDWARE FAILURES VIA VIRTUALIZATION

 The virtualization layer of software (the hypervisor plus the host OS, if used) decouples
the VM instance from the physical hardware; this section considers how this layer of
software can mitigate the impact of hardware failures on VM instances. The virtualiza-
tion hypervisor exposes virtual CPU, virtual memory, virtual storage, and virtual
 network interface card s (NIC s) to guest OS, software platform, and application instances.
One could even draw an application - centric RBD that explicitly includes these virtual-
ized devices, as in Figure 6.2 .

 Note that the virtualized application, platform, and guest OS software, and enter-
prise IS/IT may have a completely different perspective of virtualized devices because
device and performance monitoring, redundancy, and high availability mechanisms can
be hidden beneath the virtualized device interface that is exposed to guest OSs. For
example, one can easily imagine how a virtualization platform would be confi gured to
map virtualized storage operations onto a high availability RAID confi guration to offer
applications higher availability storage than they might expect from traditional deploy-
ments. The specifi c management of CPU, memory, storage, and network resources is
detailed in the next sections.

 6.7.1 Virtual CPU

 A virtual CPU represents the abstraction of the available physical CPUs or processor
cores. VM instances are confi gured with one or more virtual CPUs. The hypervisor is

 Figure 6.2. Application Reliability Block Diagram with Virtual Devices.

Virtualization
HypervisorHardware

Virtual
Memory

Virtual
CPU

Software
Platform Application

�Guest�
Operating

System

Virtual
Storage

Virtual
NIC

Software
Platform

Application
�Guest�

Operating
System

MITIGATING HARDWARE FAILURES VIA VIRTUALIZATION 125

responsible for managing the allocation of the physical processing core resources to
virtual CPUs to meet the needs of all of the VM instances within its control. The benefi t
of virtual CPU is the ability to share and more fully utilize the physical CPU resources
by allocating them to multiple VMs based on their requirements. Figure 6.3 depicts the
assignment of one or more virtual CPUs to each VM instance and the hypervisor in
turn mapping the virtual CPUs to physical cores.

 Virtual CPUs could theoretically be used by the hypervisor to mitigate the impact
of a single physical CPU failure if it is able to detect a failure of a physical CPU,
quarantine the failed physical CPU, reallocate physical CPU resources from the other
nonimpacted physical CPUs to the affected virtual CPUs, and restart the VMs. Since
the VMs are unaware of the physical CPU resources, the hypervisor could be used to
provide a quicker recovery of the impacted VM ’ s. The following risks exist when
attempting to mitigate the impact of a single physical CPU failure:

 1. The CPU failure may have compromised the hypervisor, host OS, or VM
instance, so it is no longer capable of executing properly, and thus must be
restarted.

 2. Sometimes, it is not possible to recover a single physical CPU; all of the physi-
cal CPUs on the server may have to be recovered as well. In this case, all
impacted VMs will have to be migrated to another server before the recovery
is attempted.

 3. Failure of a physical CPU could escalate into a more serious OS problem that
cannot be resolved by just quarantining the CPU.

 4. The remaining nonfailed physical CPUs may not have enough resources to
allocate to the VMs.

 6.7.2 Virtual Memory

 Virtual memory management by the hypervisor provides a means of effi ciently allocat-
ing and deallocating memory to the VMs in a way that masks the fact that they are

 Figure 6.3. Virtual CPU.

Hypervisor schedules �virtual� CPU instances onto physical CPU cores

VM
Instance

�A�

vCPU vCPU

Physical
CPU

Core 1

Physical
CPU

Core 2

Physical
CPU

Core 3

Physical
CPU

Core 4

VM
Instance

�B�

vCPU vCPU vCPU

VM
Instance

�C�

vCPU vCPU

VM
Instance

�D�

vCPU

VM
Instance

�E�

vCPU

126 HARDWARE RELIABILITY, VIRTUALIZATION, AND SERVICE AVAILABILITY

sharing physical memory. This maximizes the utilization of the memory and helps to
ensure that each VM has enough memory to meet its needs yet not interfere with
memory access by another VM.

 The hypervisor could use various techniques for virtual memory management, such
as memory compression and swapping memory to disk, to avoid shortages, thus miti-
gating failures due to memory shortage. In the case of memory failures, the hypervisor
could block out the failed memory sectors and remap memory allocation around those
sectors. VM instances that are directly impacted by memory failure events (e.g., their
active memory image is directly impacted by a hardware failure) must be recovered
via high availability mechanisms.

6.7.3 Virtual Storage

 Virtual storage abstracts the logical storage from physical storage. The virtualized
storage may be local to the processing resources (e.g., collocated on the processing
blade or in the rack mounted server) or may be networked such as via a storage area
network (SAN) or network - attached storage (NAS). Storage virtualization can be clas-
sifi ed into two general types:

 • Block virtualization can be managed at the server level, storage device level, or
network level. At the server level, a local volume manager can intercept all
attempts to access the disk and provide the proper mapping to the physical
resources. At the storage device level, a software controller (such as used by
RAID mechanisms) manages access and replication across the disk arrays. At
the network level, the SAN provides the mapping between the applications ’
storage requests and the storage controllers managing the physical resources. The
 Internet Small Computer System Interface (iSCSI) standard supports the trans-
port of data across the IP network. Network File System protocol supports access
to fi les on storage devices across the network.

 • File virtualization provides a mapping of access requests to the actual directory
and fi le level in order to mask the physical resources from the applications. This
provides more fl exibility for the storage and management of the fi les. Logical
storage can be abstracted from those physical storage pools.

 Storage virtualization offers a means of moving or redirecting fi le access to a different
device due to a failure or exhaustion of existing resources with no user impact. Multiple
layers of virtualization may be supported. Mapping of virtual to physical resources can
be implemented using mapping tables (sometimes referred to as meta - data) or more
dynamically via algorithms that calculate the location. Providing multiple paths to the
storage resources with failover capabilities can be confi gured to provide additional
robustness if one of the paths is unavailable.

 Readers will be familiar with the well - known ability of properly confi gured
RAID confi gurations to successfully detect and mitigate hard disk failures. Mapping
virtualized storage onto high availability RAID storage can mask hard disk failures
from virtualized applications. Failure containment depends upon the type of underlying

VIRTUALIZED NETWORKS 127

storage mechanisms that are used and the confi guration of the paths to the storage, but
storage virtualization can provide robust access to the data across failures of individual
devices or migration to different storage devices. For example, Amazon Web Services
reports that their fault tolerant Elastic Block Store (EBS) reduces the 4% annual failure
rate of the commodity hard disk drives that underlie EBS to a 0.1 – 0.5% annual failure
rate observed by EBS users [AWSFT] .

6.8 VIRTUALIZED NETWORKS

 Network virtualization entails a combination of hardware and software network
resources and network functionality providing a single, software - based administrative
entity, that is, a virtual network. Networking is virtualized at several levels:

 • virtual network interface cards
 • virtual local area networks;
 • virtual IP addresses; and
 • virtual private networks.

 Each of these is considered separately.

6.8.1 Virtual Network Interface Cards

 A network interface card (NIC) is a hardware component that connects the host com-
puter to the external network. A virtual NIC provides an abstraction of that physical
component to a user residing on the host (i.e., guest OS) by mapping to a physical NIC
or to a virtual network. In the case of a virtual network, the network may be contained
within the server such as between the coresident VMs. In the case of an internal virtual-
ized network a virtual network interface card (VNIC) is a type of interface managed
by the hypervisor to provide communication between the VMs within its control. VMs
on the same host can share resources and exchange data using the VNIC and virtual
switch without needing to use the external network.

 A server can have multiple physical NICs. Each physical NIC can be partitioned
into several virtual NICs. The virtual NICs can then be assigned to the VMs residing
on the server. Figure 6.4 indicates the fl ow of packets from an external LAN to the
appropriate VM by way of the physical NIC, hypervisor, to the confi gured VNIC on
that VM. VMs communicate internally (within the server) and externally via the virtual
NICs. In this way, the hypervisor takes care of managing the network I/O activities for
their VMs. To improve service availability, VMs can be confi gured to multiple physical
NIC ’ s via their Virtual NICs.

 Failures associated with a particular physical NIC can be mitigated using bonding
(sometimes referred to as NIC teaming) to aggregate links associated with multiple
physical NICs and mapping this bonded interface to a virtual NIC. If there is a failure
of one of the physical NICs traffi c to and from the VMs will be moved to the other
physical NIC. Risks associated with this bonding mechanism include:

128 HARDWARE RELIABILITY, VIRTUALIZATION, AND SERVICE AVAILABILITY

 1. The virtualization platform must support this bonding mechanism, as well as
mechanisms to detect network interface failures and failover/failback to another
network connection within its aggregated set. Proper confi guration is required
for the bonding of the physical NICs and the mapping to the Virtual NICs
confi gured to the VMs.

 2. If the physical NICs are attached to the same physical networking IC, a failure
of the IC will represent a single point of failure and impact both NICs.

 3. The host OS is often bypassed for performance reasons so bonding may not
occur.

 6.8.2 Virtual Local Area Networks

 Virtual local area network s (VLAN s) provide a means of grouping together a collection
of nodes into a single broadcast domain regardless of whether they are in the same
physical location. LANs are thus confi gured with software rather than with physical
cables. One of the purposes of VLANs is to provide network separation (e.g., separation
of network management traffi c from user traffi c). Even if multiple VLANs share an
Ethernet switch, they cannot communicate with each other directly on that switch; a
router would be required for communication between the VLANs. A VNIC can only
be associated with a single VLAN. Multiple VLANs can be instantiated to provide
network robustness. Each VLAN can be confi gured to a different physical switch. Each
physical NIC can be connected to multiple physical switches using separate ports. The
physical NICs can then be connected to a virtual switch for communication with the
VMs. Virtual LANs are not specifi c to virtualized environments, and are included here
for completeness, but will not be analyzed further in this book.

 Figure 6.4. Virtual NIC.

LAN

Hypervisor

Hardware
NIC NIC

Software Switch

Virtual
Machine

A

VNIC VNIC

Virtual
Machine

B

VNIC VNIC

MTTR OF VIRTUALIZED HARDWARE 129

6.8.3 Virtual IP Addresses

 A virtual IP address (VIP) is an IP address that is not associated with a particular physi-
cal network interface. It can be mapped to physical network interfaces on multiple
servers or associated with multiple domain names. Many redundancy mechanisms make
use of VIP addresses so that interfaces to a particular server or component only have
to know one IP address. In an active/standby redundancy situation, the active compo-
nent assumes the virtual IP address so that all traffi c directed to that VIP is managed
by the active component. If the active component fails, then the standby component
will assume the virtual IP address as part of its activation procedure and will then
receive all of the traffi c directed to that VIP. Virtual IP addresses are mentioned here
for completeness since they provide a means to mitigate the impact of a server failure
by supporting the activation of a redundant mate without interfacing components
having to keep track of that change. However, since VIPs are a commonly used mecha-
nism implemented on nonvirtualized platforms as well as virtualized platforms, they
will not be analyzed further in this book.

6.8.4 Virtual Private Networks

 The main purpose of a virtual private network (VPN) is to provide a secure, reliable
connection through encryption to a private local area network even via a remote public
network. VPNs were created to save costs by remotely connecting a private Intranet
by eliminating the need to lease physical facilities. VPNs are not particular to cloud -
 based solutions and are thus outside the scope of this book.

6.9 MTTR OF VIRTUALIZED HARDWARE

 While highly available systems can mitigate hardware failures by switching service to
a redundant hardware unit, hardware failures of simplex systems render service unavail-
able until the underlying hardware can be repaired. Hardware mean time to repair
(MTTR) estimates the time required to troubleshoot the hardware failure, complete the
hardware repair, and return the system instance to normal operation. For simplex (non-
redundant) systems, MTTR is the same as the mean time to restore service (MTTRS);
for systems with redundancy, the MTTRS is far shorter than the MTTR, an underlying
hardware failure.

 Since virtualization decouples application software from the underlying hard-
ware, hardware failures of virtualized platforms can effectively be mitigated by
promptly recovering application software to another hypervisor. This enables MTTRS
for hardware failures for even simplex (nonredundant) systems to be decoupled from
physical MTTR provided another server is available to support the application. Equa-
tion 6.1 (repeat of Equation 3.4 , for convenience) gives the simple linkage between
failure rate (the mathematical reciprocal of MTBF), repair time (MTTR), and service
availability.

130 HARDWARE RELIABILITY, VIRTUALIZATION, AND SERVICE AVAILABILITY

 Availability

MTBF

MTBF MTTR
=

+
.

 Equation 6.1. Availability as a Function of MTBF/MTTR

 Table 6.1 solves this equation for hardware for a canonical hardware MTBF of 100,000
hours and a range of MTTR values from 6 minutes to 2 days; results are expressed
both as an availability percentage as well as annualized downtime minutes. Note that
this estimate considers only hardware - attributed failures covered by the 100,000 hour
MTBF estimate; estimating system downtime would require one to consider software
attributed failures and downtime as well.

 Table 6.1 shows that with the assumed hardware MTBF and an aggressive native
hardware repair time assumption of 4 hours, over the long term, the system would
accrue 21 annualized minutes of hardware - attributed service downtime; less aggressive
hardware repair time assumptions would accrue more downtime. Assuming reserve
virtualized resources are available (i.e., online or near line) and appropriate operational
policies are in place, it might be reasonable to assume that the virtualization platform
and/or data center staff could restart an application on an alternate hypervisor following
hardware failure in minutes. If the hardware failure rate is constant at 100,000 hour
MTBF, then a 30 - minute (0.5 - hour) MTTR yields less than 3 minutes of annualized
hardware - attributable downtime compared with more than 20 minutes of annualized
downtime for 4 hour MTTR values. Therefore, when robust data center operational
policies are coupled with virtualization, the hardware attributed service downtime of
simplex applications can be dramatically reduced. If software is recovered by activating
snapshots of VM instances of partially or fully booted applications, then software
recovery time (and presumably hardware recovery time, as well) can be reduced com-
pared with native deployment, further boosting service availability of simplex system
confi gurations.

 TABLE 6.1. Example of Hardware Availability as a Function of MTTR / MTTRS

 Predicted Hardware Availability as a Function of MTTR/MTTRS

 Hardware MTBF (Hours) = 100,000

 MTTR/MTTRS
(Hours)

 MTTR/MTTRS
(Minutes) Availability (%)

 Annualized Down
Minutes

 0.1 6 99.9999 0.5
 0.25 15 99.9998 1.3
 0.5 30 99.9995 2.6
 1 60 99.9990 5.3
 2 120 99.9980 10.5
 4 240 99.9960 21.0
 8 480 99.9920 42.1

 24 1440 99.9760 126.2
 48 2880 99.9520 252.3

DISCUSSION 131

6.10 DISCUSSION

 Although the server consolidation and cloud use cases of virtualization may increase
hardware failure rates somewhat compared with traditional hardware use scenarios,
virtualization can be used to mitigate some of the impact of inevitable hardware failures.
Virtualization also offers the potential of drastically reducing the effective hardware
MTTR for standalone systems to dramatically reduce the hardware attributed downtime
of simplex (nonredundant) applications. If the hardware failure is not explicitly detected
and/or mitigated by the host OS, hypervisor, or guest OS, then the application software
and/or platform must be prepared to detect and recover from uncovered hardware
failure.

132

 Rapid elasticity is an essential characteristic of cloud computing that is radically dif-
ferent from both traditional deployment models and from redundancy. Redundancy is
designed to rapidly provide resources to recover the prefailure service capacity, and
redundancy is typically expected to recover the impacted service load in seconds or
minutes. Elasticity is designed to increase (or decrease) the capacity available to serve
offered load, and elasticity is typically expected to alter capacity in hours, rather than
weeks or months for traditional deployments.

 This chapter begins by reviewing system load basics, overload, and traditional
capacity planning, and then discusses how rapid elasticity in cloud computing changes
traditional capacity planning assumptions. Capacity - related service risks, as well as
security risks, are discussed.

 7.1 SYSTEM LOAD BASICS

 Many applications have usage patterns that vary based on hour of the day, day of the
week, and time of year. Figure 7.1 illustrates the day/night usage pattern of a sample
application with most usage during business and evening hours, and light usage when

 7

CAPACITY AND ELASTICITY

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

SYSTEM LOAD BASICS 133

most people are sleeping. Many applications show day of the week patterns, such as
heavier usage on either weekdays or weekends. Some applications exhibit other sea-
sonality patterns, such as retailing applications experiencing heavy volumes before
Christmas, and fi nancial applications experiencing peak usage when quarterly and
annual fi nancial results are prepared. For traditional applications to meet these expected
peak loads, the enterprise would have to purchase suffi cient resource to serve that
projected peak load, as well as some reserve capacity to mitigate failures that might
occur during peak usage periods. When offered load is below the peak engineered load,
the excess resource capacity (beyond necessary reserve online capacity) is unused and
hence wasted.

 Deeper examination of the Figure 7.1 example reveals insights into how resources
are actually used. There is a constant base processing load to support application moni-
toring, management, visibility, and controllability. The resource utilization to serve user
traffi c is highly variable, with minimal traffi c when most people are sleeping and peak
at the end of the business day. The fi gure clearly shows how the system explicitly
maintains reserve (or redundant) capacity to rapidly recover user service on failure of
a component actively serving users. Note that suffi cient reserve capacity is maintained
to mitigate the failure of a component serving baseload even when offered user work-
load is very light, such as in the middle of the night. The fi gure also clearly shows that
capacity not required for base processing, user workload, or reserve capacity is wasted
in this traditional confi guration. Statically sizing resource capacity to serve the peak
load in the early evening means that signifi cant resource capacity is unused (i.e.,
wasted) by this application in the middle of the night.

 Server consolidation with complementary applications is one way to increase
resource utilization. For example, one could imagine running batch jobs — like process-
ing usage records to generate bills for customers — on the platform from midnight to 6
a.m. local time to utilize some of the resource capacity that would otherwise be wasted.
The resource pooling essential characteristic of cloud computing, coupled with virtu-
alization, can enable this intelligent resource sharing.

 Figure 7.1. Sample Application Resource Utilization by Time of Day.

Sample Utilization by Time of Day

0

25

50

75

100

0 3 6 9 12 15 18 21 24
Hour of the Day

R
es

o
u

rc
e

U
ti

liz
at

io
n

 (
%

)

Waste

Reserve

User Workload

Baseload

134 CAPACITY AND ELASTICITY

 7.1.1 Extraordinary Event Considerations

 The offered service load on some applications is highly correlated with natural disasters,
concert ticket sales, reality show voting, or some hard - to - predict events of regional,
national, or commercial signifi cance. For example, within minutes of an earthquake or
terrorist attack, there is likely to be a spike in traffi c load both related to emergency
response by governmental and to other organizations involved or impacted by the event.
As news of the event reaches the general population, then there may be a traffi c spike
as citizens seek to assure that their family and friends are ok and learn more about the
event or as emergency responders send updates on their progress. The 1989 Loma Prieta
earthquake [LomaPrieta] was unexpectedly broadcast live to a national audience watch-
ing game 3 of baseball ’ s 1989 World Series, and this prompted many to call family and
friends in the San Francisco Bay Area. Figure 7.2 gives an example of a traffi c spike
due to an extraordinary event. One can see normal daily and weekly traffi c patterns
with an extraordinary event causing traffi c to spike far above normal traffi c volumes.
Obviously, enterprises strive to have their applications always deliver acceptable service
quality and reliability to all users, even during periods of unusually high demand.

 7.1.2 Slashdot Effect

 The Slashdot effect [Slashdot] occurs when a larger website creates a link to a smaller
website that produces a huge boost in traffi c to the smaller website. For example,
moments after a popular website showcases a little known website, the highlighted
website might observe a huge spike in traffi c; Figure 7.3 illustrates a moderate example

 Figure 7.2. Example of Extraordinary Event Traffi c Spike.

Time

O
ff

er
ed

 lo
ad Extraordinary event

 Figure 7.3. The Slashdot Effect: Traffi c Load Over Time (in Hours).

 Source : Wikipedia.org, at http://en.wikipedia.org/wiki/File:SlashdotEffectGraph.svg .

1200.0 k

900.0 k

600.0 k

300.0 k

0.0 k
10

by
te

s
pe

r
se

co
nd

12 14 16 18 20 22 0 2 4 6 8

OVERLOAD, SERVICE RELIABILITY, AND SERVICE AVAILABILITY 135

of the Slashdot effect. Slashdot effect traffi c is hard to predict in advance because the
effect is fundamentally driven by actions of popular websites controlled by others, and
the reactions of users to those actions. Traditional capacity planning strategies do not
generally address Slashdot effect events well because it is diffi cult to predict both the
maximum offered load during the Slashdot event and the timing of that event.

 7.2 OVERLOAD, SERVICE RELIABILITY, AND SERVICE AVAILABILITY

 Applications ultimately depend on suffi cient physical processing, storage, networking
and other resources being promptly available to serve the offered load. If suffi cient
resources are not available to meet the offered load, then either load is shed gracefully
or service performance (latency) and ultimately reliability and service availability can
be impacted. There are three canonical offered load operating regions, as shown in
Figure 7.4 :

 • Offered load is at or below confi gured capacity , so the system operates normally,
and all requests should be served with acceptable service reliability and service
latency.

 • Offered load is greater than confi gured capacity but below the maximum over-
load capacity . If the system attempts to serve an offered traffi c load above its con-
fi gured capacity limit, then service latencies are likely to increase as work queues
fi ll faster than the queues. Well - engineered traditional systems will implement

 Figure 7.4. Offered Load, Service Reliability, and Service Availability of a Traditional System.

0%

100% Configured Capacity

Offered
Load

x00%
Maximum Tested
Overload Capacity

Below configured capacity, all
offered load will be served with

acceptable service reliability and
service latency.

Service is available;
Service is reliable

When offered load significantly,
exceeds configured capacity, at

least some requests will be failed
via overload control mechanisms

Service is available;
Service reliability is impacted

If offered load far exceeds
maximum overload capacity, then
application will eventually either

shutdown or collapse
Service is unavailable;

Service reliability is zero

136 CAPACITY AND ELASTICITY

overload control mechanisms that detect when the offered load exceeds the
capacity of the resources available to serve load, and take proactive steps to shape
the load so that acceptable service is delivered to the maximum number of users
or those with priority (e.g., emergency calls). A common overload control action
is to explicitly queue the request for brief bursts of traffi c (e.g., “ all agents are
busy; please remain on the line and your call will be served by the next available
agent ”) or to return a “ too busy ” indication to some service requests for sustained
overload (e.g., “ all circuits are busy; try your call again later ”). While the over-
loaded system remains available and in control of the load, requests from at least
some users do not complete successfully and thus may be counted as failed or
defective transactions and thereby impact service reliability metrics. As a system
enters overload, many requests appear to be unacceptably served from the user ’ s
perspective because being told to try again later or wait is not the same as cor-
rectly serving the request. Users will often consider requests that were not served
correctly from their perspective as not being reliable, and thus messages rejected
due to successful operation of overload mechanisms are often counted as impair-
ments against service reliability metrics, even if the overload responses are
returned within the specifi ed latency targets (and hence do not count as service
latency impairments). Note that these impacted transactions are attributed to the
enterprise or service provider because they failed to engineer suffi cient capacity
to serve the load rather than to the supplier because the application is managing
the additional load for a period of time and/or correctly responding to overload.
As application overload controls cannot deal with an infi nite offered load, the
nominal overload control capacity is generally specifi ed as a multiple of the
engineered capacity of a particular confi guration (often 2 – 10 times), and over-
load control testing will verify that the system can endure sustained load at this
maximum overload capacity and automatically revert to normal operation shortly
after the offered load falls to or below the engineered capacity of the system.

 • Offered load exceeds maximum overload capacity . When offered load far exceeds
available processing, storage, and/or networking resources (e.g., during a distrib-
uted denial of service [DoS] attack) the system must take dramatic actions, such
as fl ushing and discarding all (or virtually all) network traffi c, or risk failing
catastrophically under the crushing traffi c load. When an application discards all,
or virtually all, user requests it is not available for user service, and thus is not
generally considered available. When an application stops responding to user
requests in a last - ditch attempt to avoid collapse (or because of collapse/
catastrophic failure), service availability is nil because no traffi c is served. While
the application may continue to execute and respond to management commands,
since no more than a tiny portion of the offered load of user traffi c is served, the
application is effectively unavailable for user service.

 7.3 TRADITIONAL CAPACITY PLANNING

 Reconfi guring physical hardware (e.g., adding more RAM or processors to a server)
is typically an activity that requires the server to be powered off, thereby potentially

CLOUD AND CAPACITY 137

impacting all users served by applications hosted on that server. Thus, growing (or
degrowing) a traditional server ’ s hardware confi guration is typically a service - impacting
action with signifi cant operational expense for the following activities:

 • Migrating traffi c served by applications hosted on the server to be
reconfi gured;

 • Executing the hardware growth (or degrowth) procedure, which typically includes
shutting down the server before executing the change and powering the hardware
on after the change is completed;

 • Reconfi guring the operating system, platform, and application software to use
the expanded (or contracted) hardware resources;

 • Restarting application software;

 • Gracefully migrating user traffi c back to the expanded (or off the contracted)
application instance.

 These activities often require direct human involvement and carry a nontrivial risk
of failure; failure of any task during a growth or degrowth operation could increase
the duration of service impact outage and increase operating expense to address the
failure.

 Thus, growth or degrowth of hardware resources supporting traditional applica-
tions deployed directly on physical hardware is an expensive and time - consuming
activity that carries a risk of failure that could produce a service outage. Some enter-
prises fi nd the expense and effort of upgrading computer hardware to be so onerous
that it is more cost - effective to simply deploy new servers rather than upgrading
systems that are deployed and in service. To minimize the opex and service availability
risk of hardware resource growth, enterprises would generally engineer their hardware
confi gurations to serve the largest expected busy hour, minute, or second of offered
load. The assumption was that the larger capital expense investment for higher capacity
up front would eliminate at least some of the opex and service availability risk of
hardware resource growth of a production system. In addition, the opex and service
availability impact of hardware resource degrowth coupled with the diffi culty in
redeploying reclaimed/salvaged hardware resources meant that many underutilized
hardware resources were simply left in place because it was more cost - effective to
leave them in place than to undertake the expense and risk of resource salvage and
redeployment.

 7.4 CLOUD AND CAPACITY

 Rapid elasticity is an essential characteristic of cloud computing that enables additional
resources to be applied as needed to support application load, and reclaimed later when
they are no longer needed. The measured service characteristic of cloud assures that
cloud consumers are charged only for the resources they actually use, and thus consum-
ers have a fi nancial motivation to use resources wisely. Cloud enables three types of
compute capacity growth (and degrowth):

138 CAPACITY AND ELASTICITY

 • Vertical Growth . Individual virtual machine (VM) instances can be allocated
more CPU, memory, and network resources.

 • Horizontal Growth . More VM instances can be spawned to enable an application
to meet the offered load.

 • Outgrowth . Additional independent instances of the application can be run in
different data centers, typically leveraging the common cloud characteristic of
geographic distribution. When supported, this outgrowth can even be to alternate
cloud service providers in what is called cloud bursting.

 Note that applications must be engineered to support one, two, or all three growth
strategies. These three growth scenarios are visualized in Figure 7.5 .

 Nonvolatile data storage (i.e., disk) grows (and degrows) vertically based on
storage volumes or fi le systems, which can grow (or shrink) in capacity. New storage
volumes or fi le systems can also be created or destroyed to meet application capacity
needs providing horizontal growth and degrowth. If necessary, nonvolatile data storage
can also experience outgrowth by sharing storage volumes or fi le systems in another
cloud data center.

 7.4.1 Nominal Cloud Capacity Model

 Figure 7.6 visualizes nominal usage of a pool of virtualized application instances in
a computing cloud. A pool of online application server instances is available to instan-
taneously serve a maximum fi nite load with acceptable service quality. Under normal
circumstances, a portion of that capacity is engaged serving the offered load, and the
remainder of online capacity is spare. Cloud service providers will strive to confi gure
resource pooling so that resources (e.g., processing) that are not required by one appli-
cation might be used by another, similar to how an operating system schedules run-
nable processes onto available processors. The offered load varies over time, and the
application should automatically engage spare capacity as load increases, potentially

 Figure 7.5. Visualizing VM Growth Scenarios.

VM VM VM

Bigger
VM

VM VM

Horizontal Growth
Add more VM instances

Vertical Growth
Increase

resources for
VM instances

Out growth
Spawn VM instances

in another cloud data center

CLOUD AND CAPACITY 139

preempting another lower priority application, and engage less capacity as load
decreases (implicitly increasing spare capacity), as the time varying offered load line
shows in Figure 7.6 . CPU, memory and network consumption are likely to vary
directly with offered load, while storage consumption are often somewhat coupled with
offered load.

 Behind the high - level visualization of Figure 7.6 are a set of online VM instances
each hosting a portion of the application ’ s service capacity, as shown in Figure 7.7 .
This visualization nominally represents the capacity available to a single application
instance in a single data center, but a similar visualization could be used to represent
aggregate capacity across a pool of application instances in several data centers. Nomi-
nally, load will be distributed uniformly across the online VM instances, such as via
DNS, a load balancer, or application distribution controller (ADC). Each VM instance
may be running on different hypervisor instances on different server hardware to mini-
mize the risk of a single hardware or hypervisor failure impacting an unacceptably large
portion of service capacity. Ideally, users would be served by a VM instance in a data

 Figure 7.6. Nominal Capacity Model.

Engaged Online Capacity

Spare Online Capacity

Time

Offered
Load

Maximum
online capacity

that can be
served with
acceptable

service quality,
reliability,
and latency

 Figure 7.7. Implementation Architecture of Compute Capacity Model.

Engaged Online Capacity

Spare Online Capacity

Offered
Load

VM Instance

VM Instance

VM Instance

VM Instance

VM Instance

Online capacity is
provided by discrete

online virtualized
application instances,

and thus grows or shrinks
by discrete VM instances

Offered load is
distributed―typically

uniformly―across
online virtualized

application instances so
each VM instance should
be serving roughly the

same level of load

VM Instance

140 CAPACITY AND ELASTICITY

center physically close to them to minimize transport latency, but well - engineered
networks will often be capable of serving users with acceptable service quality, latency,
and reliability from several data centers in their geographic region.

 Figure 7.8 illustrates how cloud service providers can instantiate additional VM
instances (e.g., horizontal growth) to increase online capacity, and release VM instances
to reduce online capacity.

 Note that we use the term “ spare online capacity ” to refer to service capacity that
is instantly available to the application when needed but is not currently engaged. One
can logically divide this spare capacity into:

 • Reserve online capacity , which is maintained to cover both: (1) spikes in offered
load until rapid elasticity mechanisms can bring additional service capacity
online and (2) as redundant capacity for high availability mechanisms to instantly
mitigate the impact of inevitable failure events.

 • Wasted capacity : Capacity that is beyond what is required to serve the offered
load (aka, engaged online capacity) and the level of reserve online capacity
dictated by enterprise operational policy is effectively unneeded and thus deemed
waste. Inevitably, there will be some nominally “ wasted ” spare capacity beyond
the level of reserve capacity dictated by the application ’ s operational policies due
to quantization of resources (e.g., you can ’ t allocate or deallocate half a VM).
However, when this level of wasted online capacity exceeds the infrastructure as
a service (IaaS) provider ’ s allocation/deallocation unit size, then one should
consider deallocating the unneeded resources.

 Conversely, when offered load increases, some spare capacity will become engaged,
thereby logically shrinking the pool of online spare capacity. When the level of spare
online capacity falls below a minimum reserve threshold, then the application can

 Figure 7.8. Orderly Reconfi guration of the Capacity Model.

Engaged Online Capacity

Spare Online Capacity

Time

Offered
Load

Additional capacity
can brought online
in anticipation of
increased traffic

load by starting VM
instances…

…and capacity can be
taken offline for

business or
maintenance reasons

by gracefully
terminating VM

instances

CLOUD AND CAPACITY 141

elastically grow to rebuild spare capacity, subject to the consumer ’ s operational con-
straints (e.g., budget and software license limits). If insuffi cient spare online capacity
is available to serve the offered load with acceptable service quality and comply with
operational policies for minimum acceptable online reserve capacity, then the applica-
tion should activate overload controls.

 7.4.2 Elasticity Expectations

 Elastically growing or degrowing the resources available to an application requires:

 • the cloud service provider to locate and allocate requested resources for the cloud
consumer; and

 • the application software to reconfi gure itself to use those newly available
resources.

 Elastic degrowth is logically the reverse: a running application instance must release
some used resources and the cloud service provider reclaims those resources to make
them available for other cloud consumers.

 Slew rate in electronics refers to the maximum ability of a circuit, especially an
amplifi er, to drive the output to track with changes in input. The classic example of
slew rate is illustrated in Figure 7.9 as the output of an amplifi er tracks with a square
wave input. While the input is assumed to be capable of “ instantly ” changing signal
levels from low to high, the amplifi er takes fi nite time to drive the output level from
low to high for fundamental physical reasons (e.g., capacitive load).

 As with physical amplifi ers, application capacity cannot be grown infi nitely fast
to track with changes of offered load. A decision must fi rst be made to add application
capacity, and then additional resources must be requested from the cloud service pro-
vider (nominally via the on - demand self - service essential characteristic of cloud com-
puting). The cloud service provider must locate suitable available resources and allocate
them to the cloud consumer. Then the application must:

 1. start up the host operating system, platform, and application software in the
newly allocated VM instance; and

 2. integrate this new service capacity with the preexisting independent application
instance before the service capacity is fully operational and available to serve
offered load.

 Figure 7.9. Slew Rate of Square Wave Amplifi cation.

Input signal
changes
instantly

Output takes
finite time to

change

Maximum rate of output
change is the slew rate

142 CAPACITY AND ELASTICITY

 Thus, the (growth) slew rate is the increment of additional capacity divided by the
latency to decide that additional capacity is needed, to allocate suitable capacity from
the cloud provider, and to engage that newly allocated resource capacity with a running
application instance. Note that the time for the XaaS platform to allocate new resources
is a critical contributor to elastic growth latency, but additional application latency is
required to make the newly allocated capacity available to serve end users. This is
illustrated in Figure 7.10 .

 Elastic growth slew rate can be improved by:

 • increasing the capacity growth per elastic growth event (increasing Δ capacity
or dy from calculus); or

 • reducing the capacity growth latency (decreasing Δ latency or dx from
calculus).

 It is likely that horizontal, vertical, and outgrowth events will each offer different incre-
ments of Δ capacity, and the Δ latency may also vary as both the cloud service
provider(s), and application instances must do different work to support each of these
three growth options. Likewise, there will be practical and design limits to the resource
capacity increments that are offered by the cloud (e.g., no 1 THz virtual CPUs are
available) and architectural limits on individual application instances (e.g., supporting
a maximum number of VMs per application instance). Thus, highly elastic applications
will support multiple options for horizontal, vertical, and/or out growth. Given the fi nite
growth slew rate, applications must decide how much excess spare capacity to maintain
online to follow normal variations in offered load, and at what load level to engage
more capacity to minimize the risk of elastic failure.

 Allocating and reclaiming resources is neither trivial nor instantaneous. Table 7.1
gives the Open Data Center Alliance ’ s (ODCA ’ s) expectations for the rate of elastic

 Figure 7.10. Slew Rate of Rapid Elasticity.

Service provider’s
elastic growth

slew rate

Incremental growth
in capacity of

individual elastic
growth event

Service provider’s latency
(time) to locate and allocate

appropriate resources to
cloud consumer

Application’s latency (time) to:
1. Request additional

resources from XaaS
service provider

2. Engage newly allocated
resources with running
application

3. Distribute workload to
newly allocated capacity

Operational
elastic growth

slew rate

Time Axis… Ca
pa

ci
ty

 A
xi

s…

CLOUD AND CAPACITY 143

growth and degrowth by service - level agreement (SLA) level. Figure 7.11 visualizes
these expectations in a plot of expected elastic capacity growth by time compared with
the theoretical scenario of nominally doubling resource allocation instantly. The key
insight from Table 7.1 and Figure 7.11 is that elastic growth is not fast enough to simply
replace overload controls. Instead, elastic growth should enable applications to grace-
fully grow their online capacity ahead of offered load so that overload controls need
not activate as frequently as might be necessary with static application capacity arrange-
ments that cannot easily change on a timely basis. Likewise, application capacity can
be gracefully reduced over time to reduce a cloud consumer ’ s operating expense.

 Figure 7.11. Elasticity Timeline by ODCA SLA Level.

IaaS Elasticity Expectations by ODCA SLA

0

100

200

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Time in Hours

O
n

lin
e

C
ap

ac
it

y
(%

)

Ideal Elasticity
Platinum
Gold
Silver
Bronze

Ideal elasticity
offers huge

capacity changes
instantaneously

Real elasticity
takes time and

has limits…

 TABLE 7.1. ODCA IaaS Elasticity Objectives [ODCA - SUoM]

 SLA Level Description

 Bronze Reasonable efforts to provide ability to grow by 10% above current usage
within 24 hours, or 25% within a month.

 Silver Provisions made to provide ability to grow by 10% within 2 hours, 25%
within 24 hours, and 100% within a month.

 Gold Signifi cantly additional demonstrable steps taken to be able to respond
very quickly to increase or decrease in needs; 25% within 2 hours, 50%
within 24 hours, and 300% within a month. Penalties to be applied if
this capacity is not available to these scale points when requested.

 Platinum Highest capacity possible to fl ex up and down by 100% within 2 hours,
1000% within a month, with major penalties if not available at any time
as needed.

 Source : Open Data Center Alliance. © 2011 Open Data Center Alliance, Inc. All Rights Reserved.

144 CAPACITY AND ELASTICITY

 As Figure 7.11 shows, the committed elastic growth increment (e.g., plus 10% of
allocated capacity, plus 25% or plus 100%) of application capacity is likely to be limited
by the elasticity SLA of the cloud service provider. The delay in making that additional
application capacity available to end users is likely to be at least a couple of hours, and
perhaps a day or more. Thus, applications should maintain suffi cient spare online capac-
ity and activate overload controls to manage traffi c beyond that capacity so that they
can likely serve a growing traffi c load with acceptable service quality until elastically
grown application capacity can be brought online. Likewise, elastic growth should
replenish the pool of online spare resource capacity that will be consumed prior to the
elastically grown capacity coming online so that additional growth in user workload —
 or service recovery on failure — can be served with acceptable service quality.

 7.5 MANAGING ONLINE CAPACITY

 The on - demand self service essential characteristic of cloud computing integrates with
the rapid elasticity characteristic to permit close to real - time management of an applica-
tion ’ s online resource usage. The process of online capacity management has several
high - level steps that are visualized in Figure 7.12 and discussed below.

 • Monitor offered load and resource usage to accumulate absolute and trend data
to support business decisions on appropriateness of current resource allocation

 • Decide . Business logic is applied to the monitored data, along with historic data,
trend analysis, and heuristic considerations to decide either:

 Figure 7.12. Capacity Management Process.

Monitor offered
load and

resource usage

Grow
capacity

Degrow
capacity

Pause…

Repeat…

Is Capacity
Change

Necessary?

Yes, make bigger. Yes, make smaller.

No change to
capacity

MANAGING ONLINE CAPACITY 145

 1. Insuffi cient spare capacity is online to assure an acceptably high probability
of serving anticipated load with acceptable service quality, reliability and
availability, and thus resource allocation should be grown.

 2. Excess spare capacity is allocated, and thus resource allocation should be
decreased (degrown)

 3. Current spare online capacity offers an acceptably high probability of serving
anticipated load with acceptable service quality, reliability, and availability
without unacceptable waste, so no capacity change is needed at this time.

 • Grow Capacity . If resource growth is decided, then a request for additional
resources must be passed to the IaaS supplier. The IaaS supplier should promptly
allocate and furnish the requested resources to the application. The application
then engages the new resources (e.g., initializes application software in the newly
allocated VM instance) to bring the new application capacity online to serve
users.

 • Degrow Capacity . If resource degrowth is decided, then the application must
decide exactly which resource(s) (e.g., VM instance and block[s] of storage) will
be disengaged of the targeted resource from service (e.g., drain traffi c from the
VM instance or move active data from the data block[s]). After the targeted
resource is successfully disengaged, the application requests the IaaS service
provider to deallocate the resource (e.g., by gracefully shutting down a VM
instance or releasing storage block[s]).

 • Pause and Repeat . Suffi cient spare capacity should be maintained online so that
capacity management decisions can be made periodically (e.g., every 15 minutes)
rather than continuously (e.g., every microsecond), because it will inevitably take
some time for each capacity management change to be completed and for traffi c
to properly engage on the reconfi gured resource allocation. The repetition fre-
quency for capacity management decisions can be statically confi gured (e.g.,
every 15 minutes) and/or triggered by threshold crossing alarms (e.g., resource
high or low water marks crossed) and/or by heuristics (e.g., x minutes after a
growth or degrowth operation).

 7.5.1 Capacity Planning Assumptions of Cloud Computing

 The cloud service model enables the cloud service provider to focus on assuring that
adequate resource capacity is available to meet consumers ’ demand, and thus the cloud
consumers can focus on engaging and releasing resources to meet the needs of their
users. This is the heart of the utility computing vision of cloud computing. Traditional
application capacity planning assumptions are shattered by the shift to cloud computing.
Consider how the often implicit assumptions of traditional capacity planning no longer
apply to applications deployed on computing clouds.

 1. Future traffi c demands must be carefully anticipated because acquiring
additional hardware resources to serve offered load requires a long lead
time . The rapid elasticity offered by IaaS cloud providers assures that

146 CAPACITY AND ELASTICITY

additional hardware capacity will be available in nearly real time (i.e., rapidly).
The on - demand self - service essential characteristic assures that the actual pro-
cedure for requesting additional resources is streamlined and simple to use. The
measured service characteristic assures that consumers are charged only for the
resources consumed, so more careful resource usage lowers cloud consumers ’
operating expenses.

 2. Releasing unused/unneeded hardware capacity is pointless because those
resources cannot be cost effectively reclaimed/reused by other applica-
tions . IaaS cloud service providers focus on effi ciently managing huge pools
of hardware resources, so any hardware resources released can be effectively
reused by other applications. In addition, the measured service essential char-
acteristic of cloud assures that cloud consumers will not be charged for unused
resources that are released and reclaimed by the cloud service provider.

 3. Capacity change events are inherently risky and expensive, and thus the
number of growth (or degrowth) events should be minimized . On - demand
self service reduces the incremental opex of capacity change events, and the
automation behind the cloud ’ s on - demand self service interface(s) enables more
rigorous automated checking compared with traditional processes, thus reduc-
ing the risk of error. The measured service nature of cloud computing assures
keeping resource usage closer to offered load (e.g., via frequent small capacity
changes) can reduce opex compared to traditional (e.g., occasional large capac-
ity changes). Thus, the closer a cloud consumer tracks their resource usage to
the offered load via frequent capacity management events, the lower the con-
sumer ’ s cloud service operating expense.

 Having discarded the traditional assumptions of capacity planning, one is free to recon-
sider the fundamentals of capacity planning based on the essential and common char-
acteristics of cloud computing. The authors suggest the following capacity planning
goals for cloud based applications:

 1. Cloud hosted applications should support rapid online resource growth in
modest cloud - oriented resource allocation units (e.g., individual VM instances
and storage blocks) .

 2. Applications should support graceful service migration of users (i.e., draining
traffi c) from target VM instances to another VM instance so excess service
capacity can be released.

 3. Applications should support release of online but unneeded resources without
disrupting user service (i.e., after user traffi c has been drained from the target
VM instance).

 4. Applications should support multiple independent application instances running
simultaneously — often in geographically distributed data centers — and possibly
hosted by different cloud service providers (i.e., cloud bursting) .

 5. Applications should support balancing offered traffi c load across multiple inde-
pendent application instances .

CAPACITY-RELATED SERVICE RISKS 147

 6. Applications should support graceful (even if service impacting) migration of
user traffi c from one independent application instance to another . This simpli-
fi es draining an independent application instance that was spawned to meet
peaks in service demand after offered load has returned to normal levels and
the additional service capacity is no longer required.

 7.6 CAPACITY - RELATED SERVICE RISKS

 Overload is the primary capacity - related risk that traditional applications are vulnerable
to when offered load exceeds engineered capacity. Applications that support rapid
elasticity are theoretically not vulnerable to traditional overload because the engineered
capacity can nominally increase to perpetually stay above the offered load. Note that
for practical architectural and design reasons, individual application instances can only
expand to a fi nite physical limit, and thus elastic applications should support the cre-
ation of an arbitrary number of application instances to serve large offered loads, and
mechanisms must be available to effi ciently distribute offered load across an arbitrary
large aggregate pool of application instances.

 If the offered load grows faster than the cloud can allocate additional resources
and the application can bring additional capacity online, then an elasticity failure
occurs, which impacts at least some offered load. In addition to elasticity failures, cloud
deployments are subject to increased service latency risks due to multitenancy and other
factors. Critical failure of an application VM instance can also present the risk of partial
service capacity loss outage. This section considers elasticity failures, service reliability,
and latency impairments and partial capacity loss failures.

 7.6.1 Elasticity and Elasticity Failure

 Figure 7.13 illustrates how successful elasticity addresses increases in offered load: as
offered load increases and less spare online capacity is available, additional resources
can be allocated and additional VM instances created to serve the load and maintain
an acceptable cushion of spare capacity that is available to serve new traffi c. Note that
online capacity is increased in discrete steps as individual VM instances come online
and are available to serve offered load. Likewise, online capacity can be released one
VM instance at a time as offered load declines and excess spare online capacity is
available.

 Since instantiating application VM instances involves starting VM instances,
loading images, and initializing virtualization and application software, it takes a fi nite
amount of time to bring new service capacity online. Thus, there is a risk that if offered
load increases so fast that new capacity cannot be brought online before all spare online
capacity is consumed, then some offered load will not be served with acceptable service
quality, latency, and reliability, as shown in Figure 7.14 . The exact behavior experienced
by users when offered load exceeds online capacity will be determined by the overload
control mechanisms and policies implemented by the application and the application

148 CAPACITY AND ELASTICITY

itself, but at least some users are likely to experience one of the following unacceptable
responses to service requests:

 • Explicit overload failure indications, such as SIP ’ s 503 Service Unavailable
response (meaning “ The server is temporarily unable to process the request due
to a temporary overloading or maintenance of the server ” [RFC3261]).

 • Increased service latency, possibly even service latencies beyond the maximum
acceptable service latency requirement.

 Figure 7.14. Elasticity Failure Model.

Engaged Online Capacity

Time

Spare Online Capacity

Spare
Online

Capacity

Additional capacity
brought online (late)

When offered load exceeds
online capacity, overload
controls should activate to

reject or redirect excess load
so some load not served with
acceptable service quality,

reliability, and latencyOffe
re

d Lo
ad

 Figure 7.13. Successful Cloud Elasticity.

Engaged Online Capacity

Time

Spare Online Capacity

Spare
Online

Capacity

Additional VM
instances are

brought online
to assure

adequate spare
capacity is

online to meet
the offered load

Offe
re

d Lo
ad

As offered load
increases…

CAPACITY-RELATED SERVICE RISKS 149

 • Time - out expiration because a message request was discarded by the cloud plat-
form or application without sending a reply.

 The application ’ s overload control policy can determine how user service is impacted
when offered load exceeds online capacity, and this infl uences whether elasticity fail-
ures (i.e., overload situations) appear as service latency impact (e.g., service unaccept-
ably slow), service reliability impact (e.g., server busy), service availability impact
(e.g., response latency exceeds maximum acceptable service latency and server appears
down), or a combination. Note that overload control policies can explicitly treat indi-
vidual users differently. For example,

 • new session/logon requests might be rejected from some classes of users to shed
offered load (e.g., requests from “ silver ” and “ bronze ” users are rejected while
 “ gold ” users ’ requests are served);

 • resource - intensive requests that consume more scarce online capacity might be
rejected during overload periods;

 • every “ N th ” request from some classes of users might be rejected in a round - robin
fashion to shed offered load;

 • active sessions, pending, or queued service requests might be cancelled for some
classes of users; or

 • combinations of these or other policies might be executed.

 As discussed in Chapter 3 , “ Service Reliability and Service Availability, ” the service
impact of elasticity failures must be considered for individual users:

 • Users who experience signifi cantly increased service latency will deem service
quality to have degraded. Service quality impact can be quantifi ed by the absolute
number of users who experience signifi cantly increased service latency or nor-
malized by the percentage of active users who experience signifi cantly increased
service latency.

 • Users who have individual and isolated service requests that fail or are unaccept-
ably delayed will deem service reliability to be impacted. Service reliability
impact is quantifi ed by the absolute number of impacted service requests or
normalized by the number of impacted service requests per million transactions,
especially during the overload period.

 • Users who are unable to obtain service in less than the maximum accept-
able service disruption period (e.g., 10 seconds) will consider the service
unavailable.

 7.6.2 Partial Capacity Failure

 Critical software failures of virtualized applications will typically impact a single VM
instance. The critical failure event will impact whatever offered load was actively being
served by the application instance experiencing the critical failure, and will reduce the

150 CAPACITY AND ELASTICITY

spare online capacity, as shown in Figure 7.15 . The users who had pending transactions
with the failed application VM instance are likely to experience service reliability
impact if pending transactions and/or perhaps volatile information in the failing VM
instance is lost; users whose sessions were served by the failed application instance are
also likely to experience some visible service impact on their next service request to
the failed application instance. Assuming there is suffi cient spare online capacity to
serve the impacted traffi c load and the application is properly designed, service requests
from impacted users will migrate to other VM instances; the exact service recovery
time depends on the application protocol options, the application architecture, behavior
of the user ’ s client application and other factors. High availability mechanisms should
instantiate a new VM instance to restore online service capacity to its prefailure level.
Note also that highly available systems are confi gured so that no single failure will
decrease online capacity below the engineered capacity, and that the impact of a VM
failure may be similar to the failure of a single blade or server in traditional deployment
architecture. Thus, for high availability systems, the service impact is limited to the
time it takes to migrate impacted users from the failed instance to “ spare ” online capac-
ity. In contrast, systems that were not engineered with adequate redundancy may experi-
ence capacity loss until the failed instance can be recovered.

 The service impact of partial capacity failures is quantifi ed by considering the
number of users who are impacted by the failure event and the duration of service
impact while the failure is detected, and they are migrated to spare online application
instances. This absolute number of users or impacted user minutes value gives a tan-
gible metric for actual service impact.

 7.6.3 Service Latency Risk

 Virtualization explicitly decouples application software from the underlying hardware,
and the essential cloud characteristic of multitenancy increases the risk that resource

 Figure 7.15. Virtualized Application Instance Failure Model.

Engaged Online Capacity

Time

Spare Online Capacity

Failure of active
VM engaged in
serving traffic

Offered load not
served due to VM

failure

Offered
Load

Offered load is migrated to
online spare capacity until
all offered load is served

Spare online
capacity returns to
nominal when the

failed VM is
recovered and

returned to service

VM failure impacts
the available

capacity, including
spare online

capacity

CAPACITY-RELATED SERVICE RISKS 151

contention may increase latency for an application to utilize a shared resource like CPU,
networking, or storage, especially when one or more applications are under stress. The
incremental latency comes from several sources:

 • Resource Contention Latency . Any resource sharing increases the risk of resource
contention that is typically addressed via some form of queuing and queuing
entails a wait period, thus accruing latency. Resource contention is more likely
to occur as the traffi c load on the system increases. As increasing resource utili-
zation is a primary goal of many virtualization deployments (e.g., server consoli-
dation), increasing resource contention is a likely side affect of virtualized
deployments. Carefully tuned queuing/scheduling strategies are essential to
assure that application instances receive timely access to resources so they can
deliver acceptable service latency to users.

 • Real - Time Notifi cation Latency . While access to physical resources like compute
cycles, disk storage, or networking are likely to be randomly distributed across
time, real - time clock interrupt notifi cations are inherently synchronized. If mul-
tiple application instances request notifi cation for the same real - time clock inter-
rupt event, then some executions may be serialized and thus implicitly shift the
real time understood by the applications that are notifi ed last. If the application
requires periodic or synchronous real time notifi cation, such as for streaming
media, then any variations in execution timing of application instances can intro-
duce notifi cation jitter. While the virtualized application may or may not be aware
of any notifi cation jitter, end users will directly experience this jitter; if this jitter
is severe enough, then the users ’ quality of experience will degrade. Real - time
notifi cation latency risk increases as more applications execute processing trig-
gered by clock interrupts.

 • Virtualization Overhead Latency . System calls made by application software
may pass through the additional layer of hypervisor software in virtualized
deployment to access hardware resources, and the additional layer of software
may add some latency. Note that the virtualization overhead latency is dramati-
cally shortened as virtualization enabled processors are deployed and hypervisors
evolve to fully leverage hardware support for virtualization.

 These service latency risks are fundamentally the same as those that confront applica-
tions running on time shared operating systems; however, since virtualization enables
more applications to share hardware resources and achieves higher hardware utiliza-
tion levels than are typically experienced on traditional architectures, the risk may be
even greater. Compared with native deployment of an application instance executing
on a traditional operating system platform running directly on physical hardware, vir-
tualization slightly increases service latency due to execution overhead of the virtualiza-
tion manager. Application service latency of a virtualized confi guration is likely to
increase somewhat compared with native as the service load approaches the full
engineered capacity of the physical hardware confi guration due to the scheduling over-
head of the virtualization manager. Theoretically, appropriate system confi gurations

152 CAPACITY AND ELASTICITY

and well engineered virtualization confi gurations can potentially produce better
overall service by optimally sharing more powerful hardware platforms compared
with more modest hardware that might have been used for standard application
deployment.

 Virtualization may slightly increase both baseline service latency and as well as
service latency for some requests, especially when the virtualized platform is under
load. This impact is likely to be manifest in changes to the distribution of service latency
for application requests compared with baseline (nominal, or 50 – 60% of engineered
load) performance. If the application and virtualized platform are well designed, engi-
neered, and confi gured, then the shape of the service latency distribution should remain
the same at full engineered load as it was at nominal load, although the latency for 50th
percentile at full engineered load may be slightly higher than at nominal load, and the
95th 1 percentile may be proportionally larger at full load than it was at nominal load.
A particular risk is if service latency, especially the 95 th percentile tail, increases dra-
matically as the system reaches full engineered capacity, then more of the latency tail
will fall beyond the maximum acceptable service latency time, and thus impact service
reliability metrics. For example, if the 95th percentile is twice the 50th percentile at
nominal (50% capacity) load, but the 95th percentile jumps to fi ve times the somewhat
higher 50th percentile latency at full engineered load, then more requests in the distri-
bution tail are likely to have unacceptably long service latency, and thus be counted as
service reliability impairments resulting in disappointed users. The key performance
metric is to characterize how much the 95th percentile service latency increases as the
traffi c load increases to full platform capacity, and to verify that even at that increased
service latency, the rate of transactions having greater than maximum acceptable service
latency is low enough to meet business needs.

 Thus, applications might want to monitor that the cloud provider is actually deliv-
ering the resource capacity expected (e.g., that another cloud tenant is not compromis-
ing the target application ’ s access to resources). If availability of allocated resources is
degraded (e.g., due to increased latency), then it may be expedient for the application
to request additional resource capacity on a different hypervisor with the expectation
that additional capacity will not be burdened with the same exogenous processing load
that is degrading the target VM instance.

 7.6.4 Capacity Impairments and Service Reliability

 Service reliability impairments (e.g., failed or defective transactions) accrue due to the
following factors:

 • Critical failures , which cause pending transactions to be lost and cause service
requests to fail until failure detection and recovery is completed.

 1 The authors use 95th percentile as a reasonable point in the latency tail (along with 50th percentile) for
analysis; readers can use whatever tail point is customary for their industry or application (e.g., 99th percen-
tile, 99.5th percentile, and 99.9th percentile).

CAPACITY MANAGEMENT RISKS 153

 • Activation of subcritical software defects — occasionally, residual software defects
will cause some requests to execute incorrectly, but will not cause a critical
failure that requires explicit recovery action.

 • Transient or one - shot events like lost or corrupted IP packets or queue overruns
due to a random, momentary traffi c spike.

 • Failure of a supporting system — complex applications often rely on other
systems, such as database servers, authentication/security servers, payment
systems, and so on. When that supporting system experiences transient, brief or
prolonged service disruption, then the target system may be forced to fail some
or all service requests, and thus service reliability metrics for the target system
will be impacted.

 • Excessive service latency as discussed in Section 3.5 , “ Service Latency, ” and
Section 7.6.3 , “ Service Latency Risk. ”

 • Live migration of VM instances , which may cause some requests to be lost and/
or delays in responses to be so long as to be deemed failed transactions, and thus
count as service reliability impairments.

 Note that although service availability impairments (aka, outages) are generally isolated
to the actual system instance experiencing the failure to enable accurate system - specifi c
service availability metrics (especially for contractual liability for service availability
attached to SLAs), brief transient events are often not tracked to the primary root cause.
Instead, service reliability impairments are often broadly bucketed as either chronic
impairments or acute impairments. Acute impairments are often correlated with critical
failures of the target system or a supporting system, or some network event (e.g., router
failure), or some application overload event. Chronic impairments are not generally
traced to or correlated with specifi c failures or events; activation of subcritical software
failures and recurring transient events (e.g., lightning, occasional buffer overfl ows)
generally fall into the chronic impairment bucket.

 Excessive service latency and transient or one - shot failures can be minimized by
appropriate system architecture and confi guration (e.g., automatic protocol retries for
lost messages) and adequate testing to validate and baseline service performance.
Residual critical and subcritical software defects are removed prior to commercial
service startup via appropriate quality processes, especially adequate system verifi ca-
tion testing. Critical hardware failures are minimized via appropriate system architec-
tures, robust hardware design and reliability diligence, and high - quality component
sourcing and manufacturing processes. If live migration has any service impact on user
service offered by an application, then the number of live migration events should be
minimized to reduce the overall service reliability impact to users.

 7.7 CAPACITY MANAGEMENT RISKS

 This section considers the reliability risks to the generic capacity management process
that was described in Section 7.5 , “ Managing Online Capacity. ” Section 11.1.5 will

154 CAPACITY AND ELASTICITY

discuss ways to mitigate the impact of some of the risks. Figure 7.16 overlays the
canonical capacity management failure scenarios onto the canonical capacity manage-
ment model shown in Figure 7.12 . Each of these failure scenarios are detailed in a
subsequent section.

 7.7.1 Brittle Application Architecture

 Cloud applications should be architected to be highly elastic to gracefully serve what-
ever traffi c load is presented by expanding and contracting the resources used by the
application rather than being brittle and constrained. Individual application instances
should effi ciently scale from small to moderate to large capacity, and it should be pos-
sible to create additional application instances that can cooperate to serve a larger traffi c
load. Individual application instances should share no components to eliminate the risk
of a single component failure impacting more than one application instance. It should
be possible to geographically distribute individual application instances both to improve
service quality offered to users by serving them from application instances that are
geographically close to the users (and thus have less transmission latency), as well as
to support georedundancy for disaster recovery.

 Elasticity of application architectures can be constrained, or brittle, on several
levels:

 1. the number of users served by a single application instance; and

 2. the number of application instances that can be federated together to serve a
larger pool of users.

 Figure 7.16. Canonical Capacity Management Failure Scenarios.

Monitor offered
load and

resource usage

Grow
capacity

Degrow
capacity

Pause…

Repeat…

Is Capacity
Change

Necessary?

Yes, make bigger. Yes, make smaller.

Application architecture
is inelastic or brittle

Wrong data is examined

Faulty capacity
management decision

Unreliable
growth

operation
Unreliable
degrowth
operation

Growth slew
rate is too

slow

Capacity management
decision are tardy Cloud burst fails when

IaaS provider’s capacity is
exceeded

IaaS resource stock out
not covered

No change to
capacity

CAPACITY MANAGEMENT RISKS 155

 If the application does not support some form of graceful federation of application
instances, then the maximum number of users served by a single application instance
is a brittle limit of the architecture. If federation of application instances is supported,
then architecture brittleness will appear at or below the product of the maximum
number of federated application instances and the maximum number of users per appli-
cation instance.

 7.7.2 Faulty or Inadequate Monitoring Data

 Capacity management decisions are based on data about offered load and spare online
capacity. Design fl aws or failures that compromise this data can cause capacity manage-
ment processes to break down. Likewise, if the solution or application architecture does
not permit visibility to key system load parameters that actually characterize the true
workload on a VM instance (e.g., depth of work queues and triggers when work queues
overfl ow), then effi cacy of capacity management processes will be impacted.

 7.7.3 Faulty Capacity Decisions

 Capacity management is fundamentally about making decisions to proactively manage
the resources allocated to an application so users are served with acceptable service
quality, reliability, and availability at acceptable cost to the cloud consumer. Even when
provided with correct input data or rules to manage and fulfi ll business policies, faulty
capacity management decisions can be made if:

 • business policies for growth and degrowth are fl awed (e.g., inappropriate capac-
ity growth and degrowth triggering criteria thresholds are used); or

 • residual software defects (aka, bugs) in decision logic cause business policies to
be executed incorrectly by automatic software mechanisms.

 7.7.4 Unreliable Capacity Growth

 Capacity growth involves two steps, each of which can fail:

 1. Application requests additional resource from IaaS service provider but the
IaaS service is unable to serve the request . If the request fails with a transient
error, then the application should retry the allocation request. If the request fails
repeatedly or with a persistent error or insuffi cient resources are provided by
the IaaS service provider, then the application should burst to instantiate another
application instance in another data center or cloud to grow capacity. The sce-
nario of not bursting on resource allocation failure is covered in Section 7.7.8 ,
 “ Resource Stock Out Not Covered. ” The case of cloud burst failing is covered
in Section 7.7.9 , “ Cloud Burst Fails. ”

 2. Application engages newly allocated resource . Application initializes the
allocated resource, synchronizes/integrates the resource with the preexisting

156 CAPACITY AND ELASTICITY

application instance, and begins engaging the resource to serve users. Failures
in resource initialization, synchronization, or engagement should be automati-
cally detected, alarmed, and recovered. Some transient failures may be miti-
gated simply by retrying the operation; other failures will require more elaborate
recovery strategies.

 7.7.5 Unreliable Capacity Degrowth

 Once a capacity decision has been made to release a particular resource, a multistep
degrowth process must be executed to prevent the associated hazards:

 1. Application stops directing new requests to targeted resource . Traffi c that is
not redirected away from the targeted resource will eventually be impacted
when the resource is deactivated and deallocated.

 2. Application fails to gracefully drain traffi c/users from the targeted
resource . Preexisting traffi c that is not gracefully transitioned or drained
from the resource will be impacted when the resource is deactivated and
deallocated.

 3. IaaS provider fails to deallocate the targeted resource . If the deallocation
request to the IaaS service provider fails, then the cloud consumer may continue
to be charged for the resource even though it is presumably no longer produc-
tively engaged by the application.

 7.7.6 Inadequate Slew Rate

 Horizontal, vertical, and outgrowth will have different capacity growth slew rates. With
a Slashdot effect or another dramatic event, the offered load could grow faster than
the maximum growth slew rate. If that rapid traffi c growth continues for long enough,
then spare capacity will be consumed, and the service simply will not be able to keep
up with the growth in demand, thereby producing an elasticity failure. Overload con-
trols should assure that the service impact of inadequate slew rate is deliberately
managed to minimize impact to priority users (e.g., serving active users with acceptable
service quality and refusing new session requests until additional capacity is online)
rather than compromising service quality, reliability, and availability for most or all
users.

 7.7.7 Tardy Capacity Management Decisions

 Allocating, initializing, and engaging additional resources inherently take time to com-
plete. Thus, capacity management decisions must anticipate trends and changes in load
to request capacity changes before the capacity is actually needed and suffi cient time
is available to successfully grow service capacity. If capacity management decisions
are not made fast enough, then there may be insuffi cient online capacity to serve the
growing offered load. For example, after an extraordinary or Slashdot event occurs, the

SECURITY AND SERVICE AVAILABILITY 157

capacity management process should activate promptly so elastic growth actions can
begin before the offered load completely overwhelms online capacity, possibly forcing
newly allocated online capacity to immediately activate overload controls and shed load
rather than normally serving the offered load.

 7.7.8 Resource Stock Out Not Covered

 Individual data centers and even particular IaaS service providers have fi nite physical
resources. Resource allocation requests made after those resources are exhausted will
fail, and applications should be prepared for those failures. Ideally, the applications will
burst to another data center, possibly with another IaaS service provider. A less desir-
able strategy is to gracefully deny service requests according to business policies that
cannot be served after IaaS capacity has been exceeded. Impacting service to existing
users or crashing is unacceptable.

 7.7.9 Cloud Burst Fails

 An attempt to burst capacity to another data center, possibly a data center operated by
a different IaaS service provider, could fail. Based on the cloud consumer ’ s policy,
applications might attempt to burst to an alternate data center or IaaS supplier, or they
might gracefully deny service requests that cannot be served by the preexisting resource
allocation. Impacting service to existing users or crashing is unacceptable.

 7.7.10 Policy Constraints

 Cloud consumers may impose constraints on maximum application capacity based on
business policies. For example, software or intellectual property used in the application
may have been licensed up to a maximum capacity, which is not permitting more than
 “ X ” users to simultaneously access some licensed content or software component. To
avoid breaching these contractual terms, cloud consumers may cap elastic growth at a
certain point and rely on overload controls to assure that the maximum online capacity
is appropriately shared by priority users.

 7.8 SECURITY AND SERVICE AVAILABILITY

 One dimension of security attacks involves the impact it has on service availability.
This section reviews the security risk impact on service availability, discusses DoS
attacks, discusses estimating the service availability impact of security attacks, and
concludes with recommendations.

 7.8.1 Security Risk to Service Availability

 The International Telecommunication Union ’ s X.805 standard “ Security architecture
for systems providing end - to - end communications ” recognizes that service availability

158 CAPACITY AND ELASTICITY

is one of the security dimensions that are vulnerable to attack. Figure 7.17 from [X805]
visualizes security threats and attacks challenging eight security dimensions across end
user data plane, control plane, and management plane of networked applications. Per
 [X805] , “ the availability security dimension ensures that there is no denial of authorized
access to network elements, stored information, information fl ows, services and appli-
cations due to events impacting the network. ”

 The availability security dimension is subject to two classes of threats:

 1. Destruction of Information or Other Resources . Damage or loss of user or
confi guration information or other resource damage can prevent an application
from delivering correct service to some or all users, thereby impacting service
availability for affected users.

 2. Interruption of Services . For example, DoS or distributed DoS (DDoS) attacks.
A (distributed) DoS attack overwhelms the target system with service requests
to drive the target into overload, and perhaps even collapse. When the system
is overloaded with attack traffi c, legitimate users are likely to experience
increased service latency or be denied service, and as the attack increases, the
system may deny service to even legitimate users to avoid total system collapse.
For cloud - based services, DoS/DDoS attacks may ramp up traffi c volumes
faster than application capacity can be added, thus initially activating the elastic-
ity failure described in Section 7.6.1 , and eventually pushing traffi c levels far
above the maximum authorized application capacity (e.g., license limits of
software components of the application).

 The X.805 security model of Figure 7.17 recognizes three planes of concern for secu-
rity, each with distinct security objectives:

 • Management Plane Security Objectives of Availability Dimension , “ Ensure that
the ability to administer or manage the network - based application by authorized

 Figure 7.17. ITU X.805 Security Dimensions, Planes, and Layers.

 Source : International Telecommunications Union [ITU - T G.114].
A

cc
es

s
co

nt
ro

l

Infrastructure security

Services security

End user plane
Control plane

Management plane

THREATS

VULNERABILITIES

8 security dimensions

ATTACKSD
at

a
co

n
fi

d
en

ti
al

it
y

C
om

m
u

n
ic

at
io

n
 s

ec
u

ri
ty

D
at

a
in

te
gr

it
y

A
va

il
ab

ili
ty

P
ri

va
cy

A
u

th
en

ti
ca

ti
on

N
on

re
p

u
d

ia
ti

on

Security layers
Applications security

SECURITY AND SERVICE AVAILABILITY 159

personnel and devices cannot be denied. This includes protection against active
attacks such as denial of service (DoS) attacks as well as protection against
passive attacks such as the modifi cation or deletion of the network - based applica-
tion ’ s administrative authentication information (e.g., administrator identifi ca-
tions and passwords) ” [X805] .

 • Control Plane Security Objectives for Availability Dimension . “ Ensure that
network devices participating in network - based applications are always available
to receive control information from authorized sources. This includes protection
against active attacks such as Denial of Service (DoS) attacks ” [X805] .

 • End User (Traffi c) Plane Security Objective for Availability Dimension . “ Ensure
that access to the network - based application by authorized end - users or devices
cannot be denied. This includes protection against active attacks such as Denial
of Service (DoS) attacks as well as protection against passive attacks such as the
modifi cation or deletion of the end - user authentication information (e.g., user
identifi cations and passwords) ” [X805] .

 7.8.2 Denial of Service Attacks

 Denial of service and DDoS attacks seek to overwhelm a target application or network
element with malicious service requests so that it is unable to service legitimate service
requests and ends up crashing the target system. Interruption of service threats are cur-
rently a larger threat than destruction of information or other resources. The fi rst fi ve
fi ndings of the 2010 Worldwide Infrastructure Security Report [Arbor] are as follows:

 • Network Operators Face Larger, More Frequent Attacks as Attackers Redouble
Their Efforts attackers have moved aggressively over [2010] to dramati-
cally increase attack volumes — for the fi rst time launching DDoS attacks break-
ing the 100 Gbps barrier .

 • Application - Layer DDoS Attacks Are Increasing in Sophistication and Opera-
tional Impact

 • Mobile/Fixed Wireless Operators Are Facing Serious Challenges to Maintain-
ing Availability in the Face of Attacks

 • Firewalls and IPS [Intrusion Prevention System] Devices Are Falling Short on
DDoS Protection

 • DDoS Attacks Have Gone Mainstream . The mainstream media has extensively
reported numerous high - profi le DDoS attacks motivated by political or ideologi-
cal disputes

 One should begin by considering the theoretical upper limit of a DoS/DDoS attack.
Applications ultimately execute on server hardware, and that server hardware is attached
to a LAN in a data center via one or more network adapters. These network adapters
often have nominal maximum speeds of 100 million bits per second (100 Mbps), 1
billion bits per second (1 Gbps), or even 10 billion bits per second (10 Gbps). While it
is generally infeasible to achieve 100% of the nominal maximum speed of the Ethernet,

160 CAPACITY AND ELASTICITY

achieving 80% of nominal maximum speed is often possible with appropriately con-
fi gured IP infrastructure; this maximum practical throughput is often referred to as
 “ wire speed ” because communications is fl owing at the maximum speed permitted by
the “ wire ” (i.e., the network adapters, IP infrastructure, and physical media). While a
1 Gbps Ethernet adapter is now fairly inexpensive, the compute and storage resources
necessary to support up to 800 Mbps of wire speed user traffi c (e.g., hundreds of thou-
sands of requests per second) is far more expensive. Traditionally, enterprises and
service providers generally scale their compute and storage resources to meet the
expected load, rather than scaling hardware to serve the sustained full wire speed of
the network adapter(s). Hence, sustained wire speed request traffi c can often drive an
application far beyond engineered capacity so the system is forced to abandon legiti-
mate traffi c along with attacking traffi c. Dedicated attackers can and do mount wire
speed DoS/DDoS fl oods at target systems.

 Beyond straightforward “ brute force ” wire speed fl ooding attacks on applications,
attackers also mount syntax, semantic, and resource attacks.

 • Syntax attacks deliberately send protocol request messages with syntactic errors,
such as data overrun or under run, missing parameters, out of range parameters,
and so on, with the expectation that these syntax errors will force the target
system to parse the message, determine the syntax error, and construct an error
response detailing the detected syntax error. All of that processing consumes CPU
resources in an effort to crowd out service to legitimate user requests.

 • Semantic attacks deliberately send protocol messages with invalid parameters,
such as referencing transactions or web pages that don ’ t exist. This forces the
application to consume processing and disk resources searching for an object that
won ’ t be found, thus denying those processing and disk I/O resources to legiti-
mate users.

 • Resource attacks deliberately consume shared resources by means of an applica-
tion installed to deplete all of the shared resources so that the “ good ” application
cannot function.

 7.8.3 Defending against D o S Attacks

 Perimeter security elements like fi rewalls, deep packet inspection (DPI) engines, intru-
sion detection/prevention system s (IDPS), and other security appliances supported by
a robust security policy are the primary defense against DoS/DDoS and many other
security attacks.

 Figure 7.18 expands on Figure 7.4 to illustrate how perimeter security and network
infrastructure elements can be confi gured to rate limit the offered load to an application
to assure that offered load does not exceed the maximum tested overload capacity.
Ideally, perimeter security elements will block all attack traffi c so that only legitimate
user traffi c fl ows to the application. If the perimeter security is evaded by attackers
(e.g., via a new attack signature in a so - called “ zero day ” attack), then rate limits in
network infrastructure and security elements themselves should still assure that traffi c
does not reach the maximum tested overload capacity.

SECURITY AND SERVICE AVAILABILITY 161

 7.8.4 Quantifying Service Availability Impact of Security Attacks

 In a successful DoS/DDoS attack, all traffi c to the target application or host is likely
to be impacted until the attack is successfully mitigated, thus producing a service
outage. [Arbor] reports that most DDoS attacks are successfully mitigated in less than
30 minutes. The rate of DoS/DDoS attacks on deployed systems is driven by decisions
of criminals and attackers based on economic and political considerations. Because the
rate of security attacks cannot be generally estimated, it is inappropriate to make any
quantitative estimates of the likely rate of DoS/DDoS attacks on a “ typical ” deployed
system, nor of the likely service availability impact of the security attacks.

 Accountability for service availability impairments due to security attack is a subtle
topic. While the attacks are external attributable per [TL9000] because they represent
 “ . . . outages caused by third parties not associated with the customer [enterprise or
service provider] or the organization [supplier], ” suppliers, service providers, and
enterprises do have responsibility to minimize the security vulnerabilities exposed to
attackers. Service providers and enterprises should protect networks and applications
with appropriate fi rewalls and security appliances, establish appropriate password and
authentication policies, promptly apply security patches, and follow other security best
practices. There is always the risk of “ day zero ” and brute force DoS/DDoS attacks,
but appropriate security diligence by suppliers, service providers, and enterprises can
harden applications and thus make attackers efforts less effective.

 Accountability for service availability impairments due to security attacks on
cloud - based applications is even more complex than for traditional or virtualized appli-
cation deployments for reasons including:

 Figure 7.18. Leveraging Security and Network Infrastructure to Mitigate Overload Risk.

0%

100% Engineered Capacity

Offered
Load

x00%
Maximum Tested
Overload Capacity Perimeter security (e.g.,

firewall and deep packet
inspection) and network

infrastructure elements should
be configured to limit the

maximum traffic rate to the
application to assure that
maximum tested overload
capacity is not exceeded

Perimeter security and
infrastructure element rate limits
should assure that offered load
never exceeds maximum tested

overload capacity, and thus never
approaches loads that would
cause application to collapse

Infrastructure
Rate Limit

162 CAPACITY AND ELASTICITY

 • Rapid Elasticity Vulnerability . Attackers can attempt to overload the rapid elas-
ticity mechanisms of cloud - based applications by increasing attack traffi c faster
than additional service capacity can be engaged, and thereby presumably impact
legitimate user traffi c.

 • Attacks from within the Cloud . Attackers can mount an attack from within the
cloud hosting the target application, and thus potentially bypass at least some
perimeter defenses.

 • Collateral Damage . Attacks on applications sharing the same compute, storage,
or other resources can indirectly impact service latency and service reliability of
other applications because shared resources are consumed by the attack, and
hence are unavailable to other applications.

 7.8.5 Recommendations

 The essential and common characteristics of cloud computing introduce some new
security risks and expand some existing risks compared with traditional deployment
models. Cloud consumers should work with their IaaS service provider to assure that
adequate perimeter security defenses protect their applications and assure that best
security practices and robust security policies are in place. Readers should refer to cloud
security references like [ENISAa] , [ENISAb] , [NIST - D] , [CSAa] , [CSAb] , [CSAc] and
 [CSAd] for further information.

 7.9 ARCHITECTING FOR ELASTIC GROWTH AND DEGROWTH

 Given both architectural limitations on elastic growth slew rate and business needs to
control operating expenses, cloud consumers must decide how much spare capacity to
keep online for variations in offered load and what high - water threshold conditions
should trigger elastic growth events. Likewise, cloud consumers should also decide
what low water event thresholds should trigger elastic degrowth events to release capac-
ity. Thus, application architects should rethink their application architectures around
the following assumptions:

 • Application consumption of cloud resources (CPU, memory, and storage) should
grow and shrink horizontally and/or vertically in reasonably quantized units (e.g.,
individual VM instances) across a reasonable range of offered loads.

 • Applications should be architected so that independent application instances can
be started in other data centers (i.e., cloud bursting) when offered load exceeds
range of supported horizontal and vertical growth.

 • Applications should trigger the cloud control software based on growth/degrowth
policies. Alternatively, applications should make capacity monitoring informa-
tion available to the cloud in order to allow the cloud to apply automatic elasticity
policies.

ARCHITECTING FOR ELASTIC GROWTH AND DEGROWTH 163

 • Applications should generate suitable management events (e.g., SNMP traps, log
records) when triggering elastic growth or degrowth events.

 • Cloud - based applications must implement robust overload controls to assure that
if offered load exceeds the online capacity of any particular application instance,
then the excess load is appropriately managed rather than simply allowing service
latency and reliability to degrade for all users, and risking eventual service col-
lapse and crash.

164

 Service orchestration is a key component in the delivery of cloud services that meet
customer and business requirements, particularly those requirements associated with
reliability, availability, and latency. The chapter will begin with a defi nition of service
orchestration. The chapter goes on to discuss how policy management and cloud
management support service orchestration, the role service orchestration plays in miti-
gating some risks that could arise in the cloud computing environment, and ends with
a summary.

8.1 SERVICE ORCHESTRATION DEFINITION

 Service orchestration entails the linking together of architecture, tasks, and tools neces-
sary to initiate and automatically manage a service. In the cloud environment, service
orchestration includes linking together and automating tasks based on work fl ows,
measured data, and policies, with the purpose of providing a service that meets the
business needs based on the associated SLA if applicable. Based on U.S. National
Institute of Standards and Technology standards (NIST) [NIST - C] , service orchestration
is responsible for the coordination and management of cloud components to provide

8

SERVICE ORCHESTRATION
ANALYSIS

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

SERVICE ORCHESTRATION DEFINITION 165

services that meet customer business requirements. That NIST defi nition of service
orchestration implies a large scope that includes provisioning and managing services
and assets, as well as scenarios such as rapid elasticity, cloud bursting, and disaster
recovery. This service orchestration analysis will focus on the reliability, availability,
and latency related aspects of service orchestration. Service orchestration encompasses
the following functions:

 • On - Demand Self - Service . On - demand self - service as explained in Section 1.1.1 ,
 “ On - Demand Self - Service, ” is an essential cloud characteristic responsible for
managing server and storage resources. Service orchestration provides the infra-
structure, processes, and tools to support requests made to add or remove VM
instances (or other software modules) or resources. In addition to the instantiation
of a new application instance and its hardware resources, service orchestration
supports the confi guring of the network resources (i.e., bandwidth and virtual
private network links), routing confi guration, and the setting up of the fi rewall
connections. Proper confi guration of the application, its resources, and interfaces
has a direct bearing on the reliability and availability of the application ’ s service.

 • Resource Management . Resource (or asset) management is responsible for the
allocation and management of the resource pools discussed in Section 1.1.3 ,
 “ Resource Pooling, ” for use by the software applications. Resource management
includes assuring the application has suffi cient resources, such as CPU, memory,
and disk storage to meet its needs and responding to requests from on - demand
self - service for the addition or removal of resources. Resource management
is responsible for mapping virtual resources allocated by the applications onto
the physical entities as discussed in Section 6.7 , “ Mitigating Hardware Failures
via Virtualization. ” Resource management also include auditing for allocated
resources that have gone unused for an extended period of time and that can be
returned to the available resource pool. The allocation of suffi cient resources, as
well as the reporting of insuffi cient resources, has a direct impact on the avail-
ability and reliability of a service.

 • Service Monitoring . Service monitoring is responsible for the collection and
reporting of measurements of the key quality indicator s (KQI s) and key perfor-
mance indicator s (KPI s). KQIs and KPIs can provide the basis for measured
service as discussed in Section 1.1.5 , “ Measured Service, ” and serve as input for
policies that are used to help manage capacity and measure service reliability.
Although service monitoring does not directly impact service reliability and
availability, it is an important component in measuring and reporting on system
reliability to ensure conformance to SLAs. Measured service can be coupled with
thresholds to trigger the growing of application instances or resources, which
in turn will contribute to a positive impact on system availability (i.e., meeting
higher capacity needs) and reliability (i.e., ensuring there are suffi cient resources
to successfully manage requests).

 • Service Distribution. Service distribution, supported by policy management, is
responsible for managing load distribution across the servers in the solution,

166 SERVICE ORCHESTRATION ANALYSIS

taking into account capacity, regulatory, latency, and security considerations.
Distributing traffi c in a manner that best meets customer requirements for service
availability and reliability is an important responsibility for service orchestration.
Service distribution includes ensuring the load is distributed to available applica-
tion instances and rerouting if that instance is not able to manage its load due to
failure or overload or due to the addition or deletion of application instances that
can manage the load. In this way, it is a key factor in service availability, that is,
making sure that all requests are successfully sent to a functioning application
instance.

 • Service Provisioning. Service provisioning is responsible for confi guring sub-
scribers and services to particular components in the cloud solution, taking into
account locations that support low latency (e.g., locating the service near to the
subscriber), high availability (e.g., provisioning a primary and secondary site),
and disaster recovery (e.g., assigning primary and secondary sites that are suf-
fi ciently far apart that no single disaster will impact both sites). Incorrect service
provisioning can lead to service availability and reliability issues, as well as
potential latency problems.

 Service orchestration can also facilitate the automation of support services, such as
billing, but that is outside the scope of this analysis.

8.2 POLICY -BASED MANAGEMENT

 Policy - based management is a key component in a service orchestration framework
that provides a means to allocate resources based on defi ned policies. Policy - based
management architecture and its uses have been specifi ed in various IETF RFCs:
 [RFC3060] defi nes the policy information model, and [RFC3198] defi nes the policy
management terminology and points to specifi c RFC references defi ning the various
components and usages. Operational policies provide concrete specifi cations and input
for operating, administering, and maintaining the cloud. This infrastructure that takes
policies as an input and provides support for managing cloud services will be referred
to as policy - based management.

 Distributed Management Task Force (DMTF) policies and constraints are a useful
way to defi ne the cloud capabilities that a cloud service provider is offering. Per DMTF,
the cloud consumer works with the cloud service provider (CSP) to customize a set of
policies that will accompany the instantiation of the consumer ’ s applications. The CSP
provides a catalog of constraints, rules, and policies offered as part of the service. The
cloud consumer can then request a customization of these constraints, rules, and policies
in their instantiation request to meet their specifi c needs. The policies will then help
govern the management of the cloud consumer ’ s application. The CSP or the cloud
consumer can also make changes once the service is running if the changes fi t into the
agreements made before instantiation of the service. The specifi cs are spelled out in
 [DSP0102] .

POLICY-BASED MANAGEMENT 167

 Policy - based management takes input from Service Level Requirements (SLRs)
(included in Service Level Agreements (SLAs)) and measurements (e.g., defi ned KQIs
and KPIs) combined with associated thresholds on those measurements to create poli-
cies. Rules are constructed and input to the policy management infrastructure to describe
the triggers and subsequent actions based on that policy. For example, if the SLR stipu-
lates 100 successful transactions per second per VM and the associated measurements
have been indicating 200 transactions per second per VM consistently over a period of
time, then a policy defi ned to comply with the 100 successful transactions per second
may automatically trigger the creation of a new VM instance to manage the additional
traffi c or issue a report (or alarm) to the customer to alert the customer to manually
request more capacity through a web server interface. This manual request by the cus-
tomer would then result in the creation of a new VM instance.

 Figure 8.1 shows an example of a service orchestration workfl ow that manages the
scaling or descaling of VMs based on usage data expressed by KPIs/KQIs. KPI/KQI
data based on defi ned measurements and SLRs are inputs into policy management.
Policy management uses policies to monitor data collected from the applications and
issues alerts to cloud management as policies dictate (i.e., based on measurements
exceeding a threshold dictated by an Service Level Requirement or Agreement). Cloud
management (discussed in Section 8.3 , “ Cloud Management ”) determines whether the
alerts require confi guration changes, and if so, activates the appropriate mechanisms to
add or remove VM instances from the cloud solution or to send a message to the cloud
consumer to make a request to do so.

 8.2.1 The Role of SLRs

 Service - level requirements defi ne the service expectations of a customer. SLRs are
often included in SLAs, providing a means for the service provider and customer to

 Figure 8.1. Service Orchestration.

Policy
Management

Cloud
Management

KQIs/KPIs SLRs

Alerts

Application
Scaling/Descaling
Commands

Policy Input

Application
Measurement

Data
Policies

Service Orchestration

Cloud
Monitoring

Cloud Data
Center

Cloud Data
Center

168 SERVICE ORCHESTRATION ANALYSIS

agree upon and document the level of customer services to be supported, their quality
goals, and the actions to be taken if the SLA terms are violated. Metrics, such as
KQIs, are used to quantitatively measure service characteristics, such as transactions
attempted, failed transactions, and so on that can then be monitored to validate product
compliance to those expectations. Policies are built to report on or trigger events upon
reaching or exceeding the customer service requirements based on the associated
KQIs. This ability to defi ne and ensure compliance to customer requirements is a key
component in providing a high level of service to the customer in compliance with
the SLAs.

8.2.2 Service Reliability and Availability Measurements

 Sophisticated enterprises and service providers will defi ne key quality indicator metrics
that can be quantitatively measured for the most important aspects of service offered
to users. Quantitative targets will be set for each of these KQI metrics, and bonus or
incentive payments to enterprise or service provider staff may be tied to achieving those
KQI performance targets. KQIs may be tied to SLA ’ s with service providers, enter-
prises, or entities representing end users, and liquidated damages may be liable if KQI
commitments are not met.

 Service quality KQI ’ s often include service reliability, service latency, or service
availability metrics, but the KQI may be expressed in service specifi c language. For
example, wireless telephony service providers often use service accessibility (probabil-
ity that a user call attempt will succeed in an acceptable amount of time with acceptable
voice quality) and service retainability (probability that a call will continue with accept-
able voice quality until explicitly released/ended by one of the call participants). See
Section 3.8.2 , “ Service Quality Metrics, ” for a discussion on these metrics.

 Careful analysis of both the metric defi nition and the particulars of the tools and
techniques that produce the quantitative results can often reveal the details necessary
to precisely specify the service reliability and availability requirements that should be
applied. For example, careful analysis of properly designed service KQI metrics should
reveal precisely which protocol responses failed service requests and the portion of
responses that could exceed the maximum acceptable service latency. These precise
and quantitative defi nition details should be captured in reliability requirements for the
virtualized application. See Section 13.7.1 for more details on measurements.

 Since measurements represent key input for service orchestration, it is important
that the measurements are well - defi ned and agreed upon by the cloud consumer. Poli-
cies can be built using these measurements and thresholds associated with them to
trigger actions by cloud management.

8.3 CLOUD MANAGEMENT

 Cloud management is another critical component used by service orchestration. As an
interface to policy - based management, cloud management is responsible for growing
and degrowing the confi guration based on automatic (e.g., policy - based triggers) or

SERVICE ORCHESTRATION’S ROLE IN RISK MITIGATION 169

manual input (e.g., web interface for adding/removing an application). Two of the
mechanisms used for scaling and descaling are rapid elasticity and cloud bursting.

8.3.1 Role of Rapid Elasticity in Cloud Management

 One of the roles of policy management is the triggering of defi ned actions to mitigate
risks associated with exceeding engineered limits (e.g., service capacity or latency).
Rapid elasticity offers the ability to add or remove cloud resources (VMs, storage
devices, etc.) triggered by manual input (i.e., request for a new instance of a VM or
application from a web - based GUI) or automatically based on a software trigger (e.g.,
reaction to a policy decision). Rapid elasticity may be used to mitigate the impact of
service overload situations by rapidly adding and provisioning VM instances to manage
increases in capacity through redistribution of the load to new VM instances. Con-
versely, rapid elasticity can scale back VM instances when there is much less traffi c
than supported by the current VM confi guration. Note that policies may include infor-
mation on where to locate the new VM instances based on regulatory issues, standards,
or proximity to users to avoid increases in latency to ensure compliance to those require-
ments or standards.

8.3.2 Role of Cloud Bursting in Cloud Management

 Cloud bursting (discussed in Section 7.4 , “ Cloud and Capacity ”) enables additional
service capacity to be added outside the data center. An example of cloud bursting is
when services running in a private cloud no longer have suffi cient resources to meet
their computing needs within the private cloud and must expand into a public cloud
in order to obtain those resources. Service federation must be provided to include the
necessary mechanisms to broker information on security - related identities, identity
attributes, and authentication among the different security realms in the private and
public clouds. Since there are security risks in expanding into another cloud, particu-
larly a public cloud, this mechanism is often recommended for services that do not have
to deal with sensitive information. There may also be risks of incompatibility in the
public cloud infrastructure, making it more diffi cult for the service to run outside its
private cloud. These disadvantages must be weighed against the promise of additional
resources for the rare times when resources might be temporarily required. Figure 8.2
shows an example of how VMs in an Enterprise private data center are scaled into the
public cloud for additional capacity.

8.4 SERVICE ORCHESTRATION ’S ROLE IN RISK MITIGATION

 Service orchestration provides a framework for managing compliance to customer
expectations for reliability, latency, and security regulatory compliance through clear
defi nition of customer requirements, careful service monitoring against those require-
ments, and mitigation actions when noncompliance issues arise. The following sections
will discuss some of the risks and mitigations of those risks.

170 SERVICE ORCHESTRATION ANALYSIS

 8.4.1 Latency

 There is the risk that traffi c is directed to sites that are so heavily loaded that they cannot
meet the service latency requirements. To identify latency issues, policies can be
defi ned that use samples of transaction latency over a period of time to algorithmically
identify trends that exceed the allowable rates defi ned in SLR ’ s. If latency issues are
identifi ed, then these latency risks can be mitigated by:

 • Using load balancing algorithms that attempt to route service to the server/data
center closest to the user.

 • Increasing bandwidth allocation to the servers with a heavy traffi c load.

 • Expanding service with rapid elasticity taking into account location of the
primary users.

 • Collocating primary data storage close to the accessing servers to minimize data
access time.

 • Collecting and reporting latency data so that any increases in latency can be
monitored and managed.

 Through careful monitoring and managing the latency, risks can be greatly reduced.

 8.4.2 Reliability

 The reliability of an application in the cloud environment can be compromised by
risks associated with the sharing of resources, as well as the dynamic nature of its
scaling and descaling. Policy management can help mitigate risks by actively monitor-
ing key reliability indicators and providing escalation triggers and procedures when
thresholds of key reliability indicators are exceeded. One of these key reliability indica-
tors is defects per million (DPM). SLR ’ s will generally indicate the maximum number

 Figure 8.2. Example of Cloud Bursting.

•Customer Data Center•Customer Data Center

•VM1 •VM2 •VM3 •VMn•�

•••Private Cloud

•Cloud Provider•Cloud Provider

•VMn+1 •VMn+2 •VMn+3 •VMn+m•�

••Public Cloud

•Customer Data CenterEnterprise Data Center

VM1 VM2 VM3 VMn�

•Cloud ProviderExternal Cloud Provider

VMn+1 VMn+2 VMn+3 VMn+m�

Enterprise cloud bursts to public cloud to increase
service capacity when offered load exceeds

available capacity in private data center

Add
Capacity

SERVICE ORCHESTRATION’S ROLE IN RISK MITIGATION 171

of failures allowed over a period of time based on service expectations. A policy can
then be defi ned, indicating that when a particular category of defects (i.e., failed trans-
actions) reaches a certain limit over a period of time (e.g., 30 minutes), a critical alarm
is generated. Service orchestration is responsible for taking this reliability policy as
input, monitoring the system for defi ned defects, and issuing an alarm when the limit
has been reached or exceeded. Reliability risks can be mitigated by moving traffi c away
from the failing component when it has neared the limit but before it has exceeded the
limit. High availability mechanisms could execute a failover of the active VM instance
to another VM in its failure group if the number of failures reaches a particular limit.
Either way, policies could be used to trigger preventative actions based on service
monitoring of events and data trends.

8.4.3 Regulatory

 In the cloud environment, especially with automated mechanisms, such as rapid elastic-
ity, there is a possibility that applications are scaled into areas that are outside regulatory
boundaries. Rules and constraints need to be defi ned in policies to ensure compliance
to regulatory requirements. The Open Data Center Alliance provides regulatory policy
management guidance to help cloud consumers assess the regulatory requirements
associated with their use of cloud services [ODCA] . Policy management can be used
to mitigate this risk of regulatory noncompliance by defi ning policies that check for
adherence to the rules and constraints established by the regulatory requirements and
ensure compliance when selecting a site for VM instantiation. When architecting a
system, it is important to understand the regulatory conditions around that service and
countries it is being operated in to make sure that the system is properly confi gured
and managed through the use of policies to meet those conditions. Rules for server
location, data storage, and service expansion should be built into the policies to ensure
that they do not fall outside of the bounds established and to trigger alerts or the
inability to install VMs or data storage devices on servers that do not meet the regula-
tory requirements.

8.4.4 Security

 Although outside the scope of this analysis it is important to note concerns around
security. In the virtualization and cloud environments, there are additional security
concerns beyond those of traditional systems due to multitenancy and rapid elastic-
ity. In the case of multitenancy, it is important to manage access to the tenants and
maintain their isolation from each other. In the case of rapid elasticity, it is important
that new instances of the applications still meet the security requirements estab-
lished between the cloud service provider and the customer. As with regulatory condi-
tions, security requirements must be well understood when confi guring a system, and
security policies and constraints should be created to assure compliance to those secu-
rity requirements.

172 SERVICE ORCHESTRATION ANALYSIS

 DMTF provides the following examples of security policies in [DSP0102] :

 • Access Control. Only specifi ed cloud users have access to a particular service
instance. Policies dictate which users can modify that service instance and where
and when it can be deployed.

 • Network Security Policies. These policies indicate how a service instance con-
nects with other external service instances or resources (e.g., via fi rewall rules
or packet inspection).

 • “ Scope ” of the Security Policies. These policies specify in which regions or
zones the instances are allowed to function.

 These examples, as well as the supporting information in [DSP0102] , provide archi-
tectural guidance in setting up a security infrastructure that can mitigate many of the
risks found in the cloud environment. Service orchestration also includes service federa-
tion, particularly for cases in which cloud bursting is allowed and manages the imple-
mentation of the mechanisms needed to broker authentication across security realms as
mentioned in Section 8.3.2 .

8.5 SUMMARY

 Service orchestration provides a framework for managing the complexity of the cloud
environment through policies, data monitoring, automation, and cloud management to
ensure compliance to customer requirements for availability, reliability, and latency. An
effective service orchestration framework should consist of the following:

 • Mechanisms that collect and monitor measurement data against thresholds . The
thresholds may consist of multiple levels indicating how close the number of
events within a time period is tracking against customer limits (e.g., percent
failed transactions within a particular measurement period). Both the defi nition
of the measurements as well as the thresholds must be agreed upon by the cloud
provider and cloud consumer.

 • Policy management system that includes a well - designed information model
that supports the defi nition of rules, conditions, and actions to be taken. The
system should be fl exible enough to support complex rules involving multiple
conditions and actions. Although template policies may be available specifi c
service policies must also be agreed upon by the cloud provider, as well as the
cloud consumer.

 • Cloud management system that can perform, manage, and report on the actions
dictated by the policy management system.

 • Automation should be a key attribute of the service orchestration framework.
Automation is key to minimizing operational complexity — and the associated
procedural errors — as well as improving reliability and availability for those

SUMMARY 173

cases in which policies resulted in actions that directed traffi c away from VM ’ s
that were experiencing unacceptable service performance.

 As part of the monitoring and management of the service, service orchestration is also
able to mitigate some of the risks introduced by the highly dynamic cloud environment.
Section 11.3.6 , “ Service Orchestration Considerations, ” will expound upon these miti-
gation techniques and provide recommendations for maximizing reliability, availability,
and latency using service orchestration.

174

 Traditional high availability arrangements deploy suffi cient local excess capacity to
promptly recover service following a single hardware or software failure, such as failure
of a fi eld replaceable hardware unit. Hardware must be operated in a physical location
like a data center, and physical locations are inherently subject to catastrophic or force
majeure events, like fi res, earthquakes, fl oods, tornadoes, acts of war (including terror-
ism), and so on. These disastrous events can render some or all of the equipment
deployed at the impacted site unavailable or inaccessible. The best practice to mitigate
the service continuity risk of disaster events is to deploy redundant system confi gura-
tions to a site that is geographically distant from the primary site to assure that no single
disaster event will impact both sites. Geographically separated system redundancy is
called geographic redundancy, or simply georedundancy.

 The common cloud characteristic of geographic distribution is necessary but not
suffi cient to support georedundancy and disaster recovery. This chapter begins with an
explanation of the differences between georedundancy and simple geographic distribu-
tion. Traditional disaster recovery principles are introduced, followed by a discussion
of how virtualization and cloud computing offer improved options for georedundant
disaster recovery. The chapter concludes with a discussion of potential service avail-
ability benefi ts of disaster recovery that are sometimes ascribed to georedundancy, and
how these corollary benefi ts are impacted by virtualization and cloud computing.

9
GEOGRAPHIC DISTRIBUTION,

GEOREDUNDANCY, AND
DISASTER RECOVERY

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

TRADITIONAL DISASTER RECOVERY 175

9.1 GEOGRAPHIC DISTRIBUTION VERSUS GEOREDUNDANCY

 Geographic distribution can be the basis for ad hoc or formal disaster recovery plan-
ning, but geographic distribution alone is insuffi cient to assure timely service recovery
from disaster events that render a site unavailable or inaccessible. Georedundancy has
two additional key requirements beyond simple geographic distribution of systems:

 1. Plans and mechanisms are in place to rapidly migrate service away from a failed
or impacted data center to an alternate data center in the event of catastrophic
site failure. For example, application data must be securely stored at a geo-
graphically separated site and arrangements must be in place to assure that fresh
backup data can be promptly restored to the recovery site.

 2. Suffi cient excess capacity is deployed so that the total engineered traffi c load
can be served indefi nitely with acceptable service quality when any single data
center is unavailable.

9.2 TRADITIONAL DISASTER RECOVERY

 Traditional disaster recovery strategies were organized by the SHARE group [SHARE]
into tiers offering better (i.e., shorter) recovery time objective s (RTO) and recovery
point objective s (RPO) [TIPS0340] [Wikipedia]:

 • Tier 0: No Offsite Data . Tier 0 enterprises have no disaster recovery plan and
no saved data. Recovery time from disaster may takes weeks or longer and may
ultimately be unsuccessful.

 • Tier 1: Data Backup with No Hot Site . Tier 1 enterprises maintain data backups
offsite but do not maintain a hot site. Backup data must typically be physically
retrieved (so - called pickup truck access method, PTAM), and thus signifi cant
time is required to access backup media. Since Tier 1 enterprises may not main-
tain their own redundant servers to recover service onto, time may be required
to locate and confi gure appropriate systems.

 • Tier 2: Data Backup with a Hot Site . Tier 2 enterprises maintain data backups
as well as a hot site, and thus recovery times are faster and more predictable than
in Tier 1.

 • Tier 3: Electronic Vaulting . Tier 3 enterprises maintain critical data in an elec-
tronic vault so that backup data is network accessible to the hot site rather than
requiring backup media to be physically retrieved and transported to the hot site.

 • Tier 4: Point - in - Time Copies . Tier 4 enterprises maintain more timely point - in -
 time backups of critical data so that more timely backup data is network acces-
sible to the hot site, thus reducing the RPO.

 • Tier 5: Transaction Integrity . Tier 5 solutions assure that transactions are con-
sistent between production systems and recovery sites. Thus there should be little
or no data loss from a disaster.

176 GEOGRAPHIC DISTRIBUTION, GEOREDUNDANCY, AND DISASTER RECOVERY

 • Tier 6: Zero or Little Data Loss . Tier 6 solutions have little or no tolerance for
data loss and thus must maintain the highest level of data consistency between
production and recovery sites, including data not explicitly protected via transac-
tions. Techniques like disk mirroring and synchronous I/O are generally deployed
by Tier 6 enterprises to minimize RPO.

 • Tier 7: Highly Automated, Business - Integrated Solution . Tier 7 solutions auto-
mate disaster recovery of Tier 6 solutions, thus shortening the RTO and with
minimal RPO.

 Each traditional tier successively will support increasingly better recovery point or
recovery time objectives but at an additional cost for the business.

 A geographically distant alternate site to recover service to following a disaster is
obviously a critical ingredient of georedundancy. Traditional recovery site options are
broadly classifi ed as follows:

 1. Ad Hoc Site . enterprise can simply plan to fi nd a new facility after a disaster
occurs, and have the replacement equipment delivered and installed at that new
facility. This ad hoc strategy naturally yields the longest service disruption fol-
lowing a disaster.

 2. Cold Recovery Site . ISO/IEC 24762:2008 [ISO24762] defi nes cold recov-
ery site as a facility “ with adequate space and associated infrastructure —
power supply, telecommunications connections, environmental controls, etc
 — to support organization Information Communication Technology (ICT)
systems, which will only be installed when disaster recovery (DR) services are
activated. ”

 3. Warm Recovery Site . ISO/IEC 24762:2008 [ISO24762] defi nes a warm recov-
ery site as a facility “ that is partially equipped with some of the equipment,
computing hardware and software, and supporting personnel, with organiza-
tions installing additional equipment, computing hardware and software, and
supporting personnel when disaster recovery services are activated. ”

 4. Reciprocal Backup Agreement . Some governmental agencies and industries
have mutual aid agreements to support each other in time of need (i.e., disaster
recovery).

 5. Service Bureau . Some companies offer processing capabilities for both ordi-
nary and disaster recovery needs. Note that in the context of cloud computing,
service bureaus might now be said to offer “ Disaster - Recovery - as - a - Service ”
(DRaaS).

 6. Hot Site . ISO/IEC 24762:2008 [ISO24762] defi nes hot recovery site as a facil-
ity hot site , that is fully equipped with the required equipment, computing
hardware and software, and supporting personnel, and fully functional and
manned on a 24 × 7 basis so that it is ready for organizations to operate their
ICT systems when DR services are activated. ” Note that cloud computing data
centers are generally hot sites.

VIRTUALIZATION AND DISASTER RECOVERY 177

 Traditional geographic redundancy typically refers to an alternate data center that has
suffi cient equipment and facilities to promptly serve the critical traffi c load with accept-
able service quality and is separated far enough from the primary site to be unaffected
by any single catastrophic event. Thus, georedundancy generally refers to a hot site
somewhere with some prior arrangements to rapidly recover service in hours or minutes,
rather than warm, cold, or ad hoc disaster recovery plans that may take weeks or months
to recover service.

9.3 VIRTUALIZATION AND DISASTER RECOVERY

 To assure rapid recovery time objectives with traditional, nonvirtualized deployments,
it was generally necessary to deploy similar or identical hardware confi gurations — often
with identical software releases installed and confi gured — to georedundant recovery
sites. This inherently constrained the utility of the georedundant equipment because
distinct hardware resources might be necessary for each application to be protected.
For example, protecting application A1 in site 1 and B2 in site 2 on a third recovery
site might require redundant instances of both systems (A3 and B3) on a third recovery
site, because although no single disaster could impact both A1 and B2, both of these
applications could not individually be rapidly and reliability recovered onto the same
physical hardware.

 Virtualization simplifi es traditional disaster recovery by relaxing the compatibil-
ity requirements on hardware deployed to the recovery site, thus making it feasible
for a virtualized pool of resources operated by a service provider to meet the disaster
recovery needs of many enterprises. In traditional georedundancy, the hardware on the
recovery site must be well matched to the primary site to assure that identical applica-
tion and platform software can run with suffi cient capacity to carry the entire traffi c
load served by the impacted site with acceptable service quality, reliability, and latency.
With virtualization, the hypervisor masks minor differences in hardware confi gurations
between the specifi c hardware confi guration of both the primary and recovery system
hardware. Thus, virtualization reduces the hardware compatibility requirements for
recovery sites, which can make it easier to select and provision disaster recovery sites,
even simplifying ad hoc recovery strategies.

 Just as virtualization permits applications to be consolidated onto shared hardware
resources, virtualization facilitates sharing of hardware for disaster recovery. Thus,
although suffi cient hardware capacity must still be engineered onto the georedundant
site, virtualization enables those hardware resources to fl exibly support disaster recov-
ery of several critical applications from the same or perhaps from several different data
centers, minimizing the need for nonshareable application - specifi c hardware. As a
result, the capital expenses associated with confi guring a georedundant site are reduced,
along with the operating expenses for data center fl oor space, cooling, and so on.

 While live migration is obviously an infeasible option for general disaster recovery
because one does not typically have the luxury of advance warning before catastrophic
site failure, recovery times might be shortened by activating paused or snapshot
VM images on the recovery site rather than booting applications from scratch. Even

178 GEOGRAPHIC DISTRIBUTION, GEOREDUNDANCY, AND DISASTER RECOVERY

if applications are booted from scratch for disaster recovery, the RTO onto virtual-
ized platforms should be at least comparable with the RTO onto traditional cold standby
confi gurations. If an active/standby or active/active georedundancy arrangement is
used, then the RTO for native and virtualized deployments should be essentially
the same.

9.4 CLOUD COMPUTING AND DISASTER RECOVERY

 Some public clouds are the modern version of “ service bureaus ” discussed in Section
 9.2 , “ Traditional Disaster Recovery ” ; private clouds can be a modern instantiation of
 “ hot sites ” for disaster recovery, and community clouds may offer similar features as
 “ reciprocal backup agreements. ” By prearranging for disaster recovery as a service,
formal plans can be put in place to assure that resources necessary to recover service
can be allocated in the same facility that enterprise data is vaulted in so that wide area
network (WAN) bandwidth bottlenecks between the data site and the new service site
do not prolong RTO. In addition, clouds offer storage services, including electronic
vaulting, so enterprises can eliminate the burden of moving and managing physical
media containing backup data.

 Alternately, enterprises can consciously plan to rely on the rapid elasticity and
geographic distribution offered by cloud service providers to recover users impacted
by a site disaster by redirecting their traffi c to one or more geographically separated
data centers. While this is often technically feasible, successful disaster recovery plans
must address the following requirements:

 • All data from primary site must be vaulted or replicated to a remote site . If the
recovery site is not the same as the vault/replication site, then recovery data must
traverse a WAN that could slow disaster recovery if the data set is large.

 • Service capacity on recovery site(s) must be able to grow fast enough to meet
RTO objective , including time to import necessary data from electronic vault or
other repository. For session - oriented services, it may take signifi cant processing
effort to authenticate and authorize each impacted user individually, as well as
effort to (re)build session context to recover service. While under normal cir-
cumstances, users may log on to the application across a broad window of time —
 thereby keeping the logon/session setup load modest — disaster recovery is likely
to prompt a very large number of users to attempt to log on/recover to the recov-
ery site essentially simultaneously. As a result, it may be necessary to engineer
peak capacity to support the unusually high rate of user logons and session setups
in disaster recovery scenarios. As described in Section 4.9 , “ Expectations of IaaS
Data Centers, ” the Open Data Center Alliance defi nes four classifi cations of
infrastructure as a service (IaaS) providers, and the recoverability expectations
from [ODCA - SUoM] are given in Table 9.1 .

 • Mechanisms must be in place to redirect user traffi c to recovery site . These
mechanisms should be transparent to users and require no user changes or recon-
fi guration of user programs.

CLOUD COMPUTING AND DISASTER RECOVERY 179

 • Nonservice - impacting migration back to recovered primary site shall be pos-
sible . While there may be a service impact due to the disaster event itself
and the subsequent georedundant recovery, there should be little or no service
impact for the planned and graceful service migration back to the repaired
primary site.

 • Periodic (e.g., annual) disaster drills shall be possible to verify that disaster
recovery mechanisms and plans meet RTO and RPO expectations, and that
graceful service migration back to the primary site has minimal impact on user
service .

 Since rapid elasticity, on - demand self service, and geographic distribution are charac-
teristics of cloud computing, some enterprises can plan to rely on ad hoc recovery from
disasters. In addition to dramatically increasing the risk that service itself and enterprise
data will ultimately not be successfully recovered, the recovery times themselves will
inevitably be signifi cantly longer than if formal disaster recovery plans had been put
in place and tested prior to the disaster event. Fundamentally, since ad hoc recovery
cannot be tested and debugged effectively before a real disaster event, enterprises that
opt for ad hoc disaster recovery inevitably rely simply on the best efforts of their staff
in the very stressful and chaotic postdisaster period to salvage enterprise service and
data — and often the enterprise itself — following a disaster event.

 The cloud computing ecosystem assures that a wide variety of cloud computing
service providers enable enterprises to select data storage options that meet the enter-
prise ’ s RPO requirements and prearrange for emergency resource availability to meet
RTO requirements. Cloud - based disaster recovery strategies do not eliminate the need

 TABLE 9.1. ODCA IaaS Recoverability Objectives [ODCA - SUoM]

 SLA Level Description

 Bronze Reasonable efforts to recover the IaaS service (e.g., access to boot
volumes and ability to reboot the cloud subscriber ’ s virtual environment
again) with up to 24 hours of data loss (e.g., loss of boot disk updates
due to no intraday backup), and up to 24 hours of recovery time. No site
disaster recovery (DR). Note that the focus is on recoverability of the
underlying service, after which cloud subscriber still has their own
recovery to complete.

 Silver Provisions made to recover within 4 hours, with up to 24 hours of data
loss. (No DR for full site disaster.)

 Gold Enhanced recovery capability to recover within 2 hours for hardware
failure, 24 hours for site failure, and no more than 4 hours of data loss.

 Platinum Highest recovery focus to provide as close to continuous nonstop
availability as possible, aiming for < 1 - hour recovery and < 15 - minute
data loss even in the event of full site failure.

Source : Open Data Center Alliance. © 2011 Open Data Center Alliance, Inc. All rights reserved.

180 GEOGRAPHIC DISTRIBUTION, GEOREDUNDANCY, AND DISASTER RECOVERY

for enterprises to execute periodic (e.g., annual) disaster drills to assure that disaster
recovery works as planned and that RTO and RPO requirements are met.

9.5 GEOREDUNDANCY RECOVERY MODELS

 Georedundancy is activated by detecting a failure at a primary site and redirecting
impacted traffi c to a redundant site that is confi gured and ready to recover service
for the impacted traffi c. There are fundamentally three georedundancy recovery
strategies:

 • Manually Controlled Recovery . This is the traditional disaster recovery strategy:
a business leader formally declares a disaster and a well - defi ned disaster recovery
plan is executed to manually transition operations to a recovery site.

 • Server - Driven Recovery . Redundant servers or other systems monitor the health
of servers and upon detecting failure of a system serving user traffi c a server
automatically takes actions to recover service to a redundant server instance
to mitigate service impact without requiring manual action by maintenance
engineers.

 • Client - Initiated Recovery . The client application, device, or user detects the
failure and explicitly initiates a recovery action. A simple example of client initi-
ated recovery is a human user detecting a stuck or nonresponsive web server,
then clicking “ cancel ” on their browser followed by “ reload ” to recover from
a web server failure which hopefully retries the request to web server that is
available. Readers can easily imagine client application architectures that auto-
mate the failure detection and automatic service recovery to an alternate applica-
tion instance (i.e., a different IP address), which is located in a different data
center.

9.6 CLOUD AND TRADITIONAL COLLATERAL BENEFITS
OF GEOREDUNDANCY

 Some enterprises assume that traditional georedundancy offers several benefi ts beyond
disaster recovery: reducing planned service downtime; mitigating catastrophic element
failure; and mitigating uncovered (i.e., failures that are not detected and recovered) and
duplex element failures. While these traditional benefi ts are feasible with cloud deploy-
ments, they are no longer necessarily tied to georedundancy. Let us consider each of
the assumed collateral benefi ts of georedundancy:

9.6.1 Reduced Planned Downtime

 Major activities, such as growing or degrowing hardware confi gurations of systems or
physically moving equipment, have less risk of impacting service if traffi c is gracefully

CLOUD AND TRADITIONAL COLLATERAL BENEFITS OF GEOREDUNDANCY 181

drained from the systems prior to beginning the activity. Orderly migration of traffi c
away from the target site to the georedundant site is a traditional way to quiesce a site
so it can be taken offl ine prior to executing planned activities. Obviously, there is far
less risk that a successful or failed activity will disrupt user service if there is no traffi c
fl owing through the element when the activity is performed. Virtualization and cloud
computing offer options for minimizing planned downtime without requiring georedun-
dancy; this is discussed in detail in Chapter 5 , “ Reliability Analysis of Virtualization. ”

9.6.2 Mitigate Catastrophic Network Element Failures

 Occasionally a system will experience a catastrophic or duplex failure (i.e., both redun-
dant units are simultaneously unavailable) that defeats high availability mechanisms
and will require hours to repair. For example, water — even rodent urine — in a rack of
equipment might physically damage multiple hardware units in a single system, thus
overwhelming the high availability design of the system and requiring a service impact-
ing hardware repair before service can be restored. Traditionally, if service can be
recovered to a georedundant instance of the impacted network element with signifi -
cantly less overall impact than repairing the damaged network element, then georedun-
dant recovery may be a good option. Note that traffi c is sometimes migrated back to
the primary system after it is repaired, so the potential service impact of eventual traffi c
migration after repair should be considered when deciding whether or not to engage
georedundancy to mitigate an element failure. Cloud computing dramatically changes
the economics of hardware redundancy arrangements by making it possible to distribute
individual instances of redundancy to different hypervisors on physical servers that are
separated within a data center far enough that nothing short of a catastrophic site failure
would impact all redundant module instances of a single system. For example, one can
imagine a roof leak compromising a single chassis or rack of equipment, thus rendering
a traditional system unavailable; but one cannot imagine a single roof leak simultane-
ously, compromising both redundant application instances running on hypervisors on
physical hardware at opposite sides of the same data center. For example, Amazon Web
Services uses the concept of “ availability zones ” to mitigate the risk of catastrophic
failures within a data center by assuring that each zone is physically distinct with
independent networking, power, and cooling infrastructure [AWS08] .

9.6.3 Mitigate Extended Uncovered and Duplex Failure Outages

 Some types of properly confi gured solutions can even be engineered to leverage geo-
redundancy to mitigate more common uncovered and duplex failure downtime, thereby
boosting overall service availability seen by users. Specifi cally, automatic failure detec-
tion and recovery by client applications can be engineered to mitigate uncovered and
duplex failure downtime by having clients automatically switch to georedundant system
instances if requests are not properly served by the primary system instance with accept-
able service latency, quality, and reliability. This topic is considered in detail in “ Beyond
Redundancy: How Geographic Redundancy Can Improve Service Availability and
Reliability of Computer - Based Systems ” [Bauer11] . Traditionally, an active redundant

182 GEOGRAPHIC DISTRIBUTION, GEOREDUNDANCY, AND DISASTER RECOVERY

system instance would be used to mitigate uncovered or duplex failure outages via
client - initiated recovery because client - initiated recovery often offers a more practical
way to rapidly detect and recover from these failures. Virtualization and cloud comput-
ing changes the economics of (virtual) hardware, so alternate solution architectures can
be considered to mitigate the risk of uncovered and duplex failure events that enable
clients to recover service to redundant system instances collocated with the failed
instance, rather than requiring them to switch to a more distant data center.

9.7 DISCUSSION

 Fundamentally, cloud computing providers offer distributed hot sites for disaster recov-
ery, and virtualization coupled with measured service and rapid elasticity means that
georedundant solutions can be deployed via cloud computing at lower expense than
traditional georedundancy. Ultimately, the feasible service availability benefi ts of
cloud - based georedundancy are essentially the same as the feasible benefi ts of compa-
rable traditional georedundancy deployments. Virtualization does offer a slight incre-
mental benefi t over traditional georedundancy in its ability to reduce downtime via live
migration and to reduce the negligible risk of catastrophic physical failure of a tradi-
tional network element by physically distributing hardware resources supporting the
application across a data center, but these are small benefi ts that are not usually even
quantifi ed. The economics of cloud computing permits at least some enterprises to shift
from the traditional “ active ” primary site plus “ standby ” disaster recovery site model
to an all - sites active model, which offers availability benefi ts that are discussed in
Chapter 11 , “ Recommendations for Architecting a Reliable System. ”

 III

RECOMMENDATIONS

185

 10

 Cloud computing is inherently a more complicated arrangement than tradition comput-
ing; instead of suppliers offering equipment and applications directly to enterprises that
will operate the equipment and applications, cloud computing separates the cloud con-
sumer enterprise that rents computing resources from the cloud service provider who
owns and operates the computing resources. In addition to suppliers, cloud service
providers, and cloud consumers, there are likely to be several communications service
providers hauling IP traffi c between end users and cloud data centers. All of these
players are accountable for some service impairments that can impact the quality of
experience for end users. This chapter offers canonical service downtime budgets
and models to help understand how accountability changes as traditional applications
migrate to the cloud. This chapter also frames the broader challenge of end - to - end
service availability via several standard service measurement points.

 10.1 APPLICATION CONFIGURATION SCENARIOS

 Virtualization enables deployment fl exibility beyond the options of traditional applica-
tion deployment. In rough order of increasing complexity, these virtualization scenarios
are as follows:

APPLICATIONS, SOLUTIONS,
AND ACCOUNTABILITY

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

186 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY

 • Traditional or Native Deployment (i.e., No Virtualization Is Used) . A software
application is installed and integrated with an operating system running directly
on nonvirtualized physical hardware.

 • Hardware Independence Usage Scenario . virtualization reduces or eliminates an
application ’ s dependence on the specifi cs of the underlying physical hardware in
the hardware independence usage model. While the application may still require
the same machine instruction set (e.g., Intel), virtualization can decouple the
physical memory, networking, storage, and other hardware - centric details from
the application software so the application can be moved onto modern hardware
rather than being tied to legacy hardware platforms.

 • Server Consolidation Usage Scenario . In the server consolidation usage sce-
nario, virtualization is used to increase resource utilization by having multiple
applications share hardware resources. In some cases, this provides the ability
to take advantage of otherwise underutilized hardware resources. Moore ’ s law
assures that the processing power of servers grows steadily over time, yet the
processing needs of individual application instances does not necessarily grow
as rapidly. Thus, in many cases, the growth in available processing power may
not be effectively used by a single application running on the server hardware.
In these cases, applications may nominally oversubscribe hardware capacity
and the hypervisor relies on statistical usage patterns to make resource sharing
work well.

 • Multitenant Usage Scenario . A multitenant deployment permits multiple inde-
pendent instances of a single application to be consolidated onto a single virtual-
ized platform. For example, different application instances can be used for
different user communities, such as for different enterprise customers; web
service and electronic mail are examples of common multi - tenant applications
as multiple independent instances of the same application may be running on
a virtualized server platform to simultaneously serve different web sites or users
from different enterprises. While some applications are explicitly written to be
multitenant, other applications were written with the design assumption that a
single application instances on a single hardware platform supports a single
user community. Virtualization can facilitate making these single system - per - user
community applications support multitenancy confi gurations in which several
distinct user communities peacefully coexist on a shared, virtualized hardware
platform.

 • Virtual Appliance Usage Scenario . The virtual appliance notion of the Distrib-
uted Management Task Force [DSP2017] represents one ultimate vision of vir-
tualization. In the appliance vision, applications are delivered as turnkey software
prepackaged with operating systems, protocol stacks and supporting software.
The supplier benefi ts by being able to thoroughly test the production confi gura-
tion of all system software, and the customer benefi ts from simpler installation
and maintenance, and should enjoy the higher quality enabled by having their
fi eld deployment software confi guration be 100% identical to the reference con-
fi guration that was validated by the appliance supplier.

APPLICATION DEPLOYMENT SCENARIO 187

 • Cloud Deployment Usage Scenario . The cloud deployment usage scenario pro-
vides the most fl exible confi guration, which is able to grow and degrow automati-
cally along with changing workloads. With the fl exibility of cloud deployment
comes increased complexity, which is mitigated by service orchestration and
elasticity, which provide automation guided by policies and usage data. Cloud
deployment risks and mitigations are primarily considered in Chapter 13 , “ Design
for Reliability of Cloud Solutions. ”

 Undoubtedly not all usage scenarios will apply to all applications. As a practical matter,
some organizations will integrate virtualization into their existing applications over
several releases by supporting different usage scenarios in different releases. For
example, an application might be engineered and tested to support server consolidation
in one release; engineered and tested for multitenant and cloud deployment in another
release, and eventually offered as a virtualized appliance in a later release.

 10.2 APPLICATION DEPLOYMENT SCENARIO

 Neither traditional nor virtualized systems are useful in isolation; to deliver useful
service to users, some physical hardware must be installed in a suitable physical envi-
ronment and supplied with both power and IP connectivity. Operationally, this is gener-
ally achieved by deploying applications into a data center (see Section 1.3.1 , “ What Is
a Data Center? ”). Organizations do not generally deploy applications by simply con-
necting a traditional or virtualized server hosting an application into a data center to
the public internet. Instead, there is usually a security appliance like a fi rewall or deep
packet inspection server to enforce a security perimeter to protect the application from
external attack. Within the security perimeter is often a load balancer to distribute the
offered load across the application ’ s front - end servers. Many applications are archi-
tected with multiple tiers to simplify scalability, such as supporting user interface and
client interaction in a tier of front - end servers, implementing application logic and
business rules in a middle tier, and maintaining application data in a third tier of data-
base servers. As critical applications are generally designed to remain operational even
during routine maintenance and repair, these elements are often deployed across redun-
dant instances. All of this physical hardware is installed in a data center that provides
power, a suitably controlled environment, and network connectivity to all of the ele-
ments, including the routers that connect the data center to the public Internet. This
canonical application deployment architecture is illustrated in Figure 10.1 . Note that
although the diagram shows pictures of server hardware elements, software on routers,
perimeter security, load balancers, application front - end, application back - end, and
database servers is implicitly assumed to be included in this deployment diagram.

 Thus, the service availability seen by a user outside of the data center implicitly
integrates the downtime of the data center ’ s routers, perimeter security, load balancers,
power, environment and IP interconnection infrastructure, as well as the target applica-
tion, and all this equipment and infrastructure is inevitably subject to failures, just as
the target application is. The service availability seen from the public Internet for one

188 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY

application instance in one data center is inevitably lower than that of the product -
 attributable service availability of standalone applications.

 10.3 SYSTEM DOWNTIME BUDGETS

 System architects and reliability engineers use downtime budgets to manage service
availability. For example, a system with “ fi ve 9 ’ s ” service availability is budgeted to
have annual service downtime of 5.26 minutes per year; 5.26 minutes per year is the
multiplicative product of the number of minutes per year (i.e., 365.25 days per average
year times 24 hours per day times 60 minutes per hour) multiplied by 0.001% (99.999%
uptime means 0.001% downtime). As with any budget:

 • the expected downtime “ expenses ” are categorized;

 • each category is assigned a reasonable allocation of the overall downtime
budget;

 • category allocations are adjusted to reach an acceptable and optimal total “ cost ” ;

 • architecture, design, and test plans are managed to achieve the individual down-
time allocations; and

 • if the downtime budget is missed in one measurement period (e.g., release), then
it can be altered, and/or additional effort can be invested in the next period to
meet the downtime budget.

 Thus, the question of whether or not a virtualized system instance can achieve the same
service availability as a native confi guration comes down to the question of whether it
is feasible and likely that a virtualized deployment can achieve a long - term average
downtime budget that is equivalent to the downtime budget of a native system. We
consider this question in three steps:

 1. review the product - attributable downtime budget of a sample traditional high
availability system;

 Figure 10.1. Canonical Single Data Center Application Deployment Architecture.

Public
Internet

Routing
Perimeter
Security

Load
Balancing

Application
Front End

Application
Back End

Database
Server

Data
Center

Power
Environment

Interconnection

SYSTEM DOWNTIME BUDGETS 189

 2. alter the traditional product - attributable downtime budget for a hardware -
 independence virtualized deployment scenario and assess implications for an
infrastructure as a service (IaaS) supplier; and

 3. revise the hardware independence budget for cloud deployment scenario.

 10.3.1 Traditional System Downtime Budget

 Traditionally, system downtime expectations and predictions offered by suppliers
covered only product - attributable service downtime, which is largely due to software
and hardware failures (see Section 3.3.6 , “ Outage Attributability ”). Downtime caused
by factors not attributable to the system supplier or the product itself (e.g., power fail-
ures, network failures, and human mistakes by the customer ’ s maintenance staff) are
generally excluded from product - attributable system availability measurements and
predictions because they are allocated to other categories (e.g., customer - attributable
downtime). Likewise, the measurement typically covered only agreed service time, so
scheduled or planned downtime periods were excluded (see Section 3.3.1 , “ Service
Availability Metric, ” and Section 3.3.7 , “ Planned or Scheduled Downtime ”).

 Traditional system downtime budgets allocate unplanned product - attributed service
downtime across three broad categories: hardware, software, and planned/procedural
(sometimes called “ human ”). A traditional “ fi ve 9 ’ s ” system budget generally allocates
10% of the budgeted 5.26 prorated minutes (315 prorated seconds) of annual service
downtime to hardware, meaning that hardware attributed causes typically gets about
30 seconds of prorated annual downtime. The vast majority of the remaining downtime
will be allocated to unplanned software failures, but some of the remaining 4 minutes
and 45 seconds might be budgeted to unsuccessful planned and procedural activities
like failed software upgrades. The software downtime may be further budgeted either
by architectural layer (e.g., application software vs. platform software) or by functional
module (e.g., front - end software processes vs. back - end software processes), or may
be factored in some other way. Table 10.1 gives a sample “ fi ve 9 ’ s ” product - attributable
downtime budget for an application.

 Note that while fi ve 9 ’ s technically means 5.26 annualized down minutes, down-
time budgets typically round this to 5.25 down - minutes for simplicity. This tiny round-
ing error is likely to be far smaller than the uncertainty in the estimates of individual
downtime categories, so it does not materially affect the utility of the budget.

 10.3.2 Virtualized Application Downtime Budget

 The hardware independence and server consolidation usage scenarios insert a hypervi-
sor, and perhaps a host OS instance, between the guest OS supporting the target appli-
cation and the underlying hardware. While hardware - attributed downtime doesn ’ t
simply vanish in these scenarios, accountability for hardware - attributed downtime may
be different. In particular, since the virtualized platform and underlying physical hard-
ware may be supplied separately from the application software, the virtualized applica-
tion budget explicitly considers software and virtualized hardware downtime separately.

190 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY

Table 10.2 modifi es the sample traditional fi ve 9 ’ s budget of Table 10.1 for hardware
independence or server consolidation usage scenarios as follows:

 • “ hardware failure downtime ” becomes product - attributable “ virtualized hard-
ware platform downtime ” ;

 • “ software failure downtime ” is unchanged; and

 • planned and procedural is refactored from outcome - based attribution (i.e., suc-
cessful scheduled activities vs. unsuccessful scheduled activities) to downtime
attribution based on application versus virtualized platform.

 Thus, the virtualized application retains the entire software failure downtime attribu-
tion, as well as a portion of the planned and procedural attribution, while the hardware
failure downtime and hardware - related planned and procedural downtimes are explic-
itly separated. This enables one to explicitly address the feasibility and likelihood of a
virtualized application achieving its product - attributable availability target by indepen-
dently considering the feasibility and likelihood of the virtualized software achieving
its downtime budget over the long term and the feasibility and likelihood of the virtual-
ized hardware platform achieving its product - attributable downtime budget over the
long term as well.

 TABLE 10.1. Sample Traditional Five 9 ’ s Downtime Budget

 Product - Attributable Downtime Category

 Annualized Target
for 99.999%

 % Seconds Minutes

 Hardware sttributable — target: 30 seconds = 0 minute 30 seconds
 Hardware failure downtime — service downtime
triggered by hardware failures.

 30 0.5 10

 Software attributable — target: 225 seconds = 3 minutes 45 seconds
 Software failure downtime — service downtime
due to software failures of platform and/or
application software.

 225 3.75 71

 Planned and procedural attributable — target: 60 seconds = 1 minute 0 second
 Successful scheduled activities — service downtime
 “ by design ” for successful upgrade, update,
retrofi t, hardware growth, and other scheduled
or planned maintenance activities.

 0 0 0

 Unsuccessful procedural activities — service downtime
attributed to unsuccessful or botched
maintenance activities such as upgrade, update,
retrofi t, hardware growth, and provisioning.

 60 1 19

 Total 315 5.25
 Availability 99.999%

SYSTEM DOWNTIME BUDGETS 191

 TABLE 10.2. Sample Basic Virtualized Five 9 ’ s Downtime Budget

 Product - Attributable Downtime Category

 Annualized Target
for 99.999%

 % Seconds Minutes

 Hardware attributable — target: 30 seconds = 0 minute 30 seconds
 Virtualized hardware platform downtime — service downtime
attributed to virtualized hardware resources (e.g., virtual
CPU, memory, disk, and networking).

 30 0.5 10

 Software attributable — target: 225 seconds = 3 minutes 45 seconds
 Software failure downtime — service downtime due to
software failures of platform and/or application software.

 225 3.75 71

 Planned and procedural attributable — target: 60 seconds = 1 minute 0 second
 Application software - related planned and procedural
downtime — product - attributable service downtime attributed
to successful and unsuccessful planned and procedural
activities associated with application

 45 0.75 14

 Virtualized platform - related planned and procedural
downtime — product - attributable service downtime attributed
to successful and unsuccessful planned and procedural
activities associated with the virtualized hardware platform.

 15 0.25 5

 Total 315 5.25
 Availability 99.999%

 10.3.3 I aa S Hardware Downtime Expectations

 For a virtualized application with the canonical fi ve 9 ’ s budget of Section 10.3.2 to
achieve fi ve 9 ’ s product - attributable service downtime on an IaaS platform, the IaaS
platform should offer comparable product - attributed hardware downtime to assure
comparable service availability. Architecturally, the IaaS - attributable downtime budget
challenge comes down to this: can the product - attributable downtime of the IaaS pro-
vider ’ s infrastructure achieve comparable service downtime to the system ’ s traditional
high availability hardware confi guration? Note that for consistency with traditional
system downtime budgets and predictions, this allocation considers only hardware and
software downtime causes directly associated with emulating the traditional system
hardware; this means that the other categories of impairments generally attributed to
IaaS service providers (e.g., power, environment, and human) are not included in this
product - centric budget. Downtime due to rapid elasticity and other aspects of cloud
computing are considered in the next section (“ Cloud Based Application Downtime
Budget ”).

 Figure 10.2 shows a reliability block diagram (RBD) of sample blade - based high
availability system architecture, and Figure 10.3 shows a RBD of equivalent sample
high availability IaaS infrastructure. Logically, the Ethernet switch blades of the blade -
 based system of Figure 10.2 are replaced by pairs of top - of - rack (TOR) and end - of - row

192 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY

 Figure 10.2. RBD of Sample Application on Blade - Based Server Hardware.

PEM

PEM

Backplane

Fan

Fan

N of M

Active/
Active

Power
Entry

Modules

Switch

Switch

Active/
Active

Ethernet
Switch
Blades

Fan Trays

Active/Active

Fan

Fan

N of M

FE

FE

Active/
Standby

Front-End
Blades

BE

BE

N + K
Load

Sharing

Back-End
Blades

 Figure 10.3. RBD of Sample Application on IaaS Platform.

Virtualized
Front-End

Application
revreSsecnatsnI

Farm
Storage
Array

End-of-
Row

Switch

FE

FE

Top-of-
Rack

Switch

Virtualized
Back-End

Application
Instances

BE

BE

Top-of-
Rack

Switch

Compute Resources Storage Resources

Server
Farm

Exact arrangement of physical
servers is a function of how

application VM instances are mapped
across IaaS compute servers

SYSTEM DOWNTIME BUDGETS 193

(EOR) Ethernet switches; the compute blades are replaced by portions of the IaaS
provider ’ s server farm and disk arrays; and the power entry modules and fan trays are
integrated with each of IaaS provider ’ s components. The backplane element in Figure
 10.2 logically separates into the internal chassis or backplane arrangements within each
of these IaaS components (which are considered in availability modeling of each com-
ponent) and the Ethernet cables that interconnect the EOR switch, TOR switch, server
resources, and storage array; Ethernet cables are not considered in availability model-
ing. The exact arrangement of compute servers in the RBD is a function of how the
application ’ s virtual machines are mapped onto physical hardware. Typically redundant
VM instances (e.g., active and standby instances) will explicitly be mapped onto dif-
ferent physical servers so that no physical server is a single point of failure. Note that
as the storage array may be in a different rack (or row) than the server resources, a
separate pairs of TOR switches (or additional IP infrastructure) may be required to
connect the compute and storage resources. Traditional high availability systems are
developed to achieve a long - term average of 30 seconds of annualized downtime across
Figure 10.3 ; the question becomes whether IaaS providers can architect their high
availability infrastructure (e.g., Figure 10.3) to achieve comparable product - attributable
downtime. This question is considered in detail in Section 11.5 , “ Minimizing Hardware -
 Attributed Downtime. ” Fundamentally, while there is likely to be more hardware — and
hence a higher hardware failure rate — in the more fl exible IaaS deployment confi gura-
tion than with an optimized traditional native hardware deployment, more effective
failure detection, redundancy, and recovery mechanisms can at least partially compen-
sate for this slightly higher underlying hardware failure rate.

 10.3.4 Cloud - Based Application Downtime Budget

 Cloud deployment scenarios are fundamentally different from the hardware indepen-
dence usage scenario because the cloud service provider ’ s virtualized hardware plat-
form is offered separately from the application software. While the application supplier
is not accountable for the root cause of any hardware failures, the application supplier
is responsible for promptly and automatically recovering service following typical
hardware failures when the application is deployed in a high availability confi guration.
For example, virtualized servers hosting application VMs will occasionally fail, thus
impacting application users being served by the affected VM instances. Application
suppliers are expected to confi gure their software to automatically detect and recover
from these inevitable hardware failures with minimal impact on user service. As at least
some of these hardware events are likely to cause brief user service impact, application
suppliers can only be expected to achieve their service availability expectations when
the underlying hardware offered by the cloud service provider is acceptably reliable
and the cloud infrastructure behaves robustly. For example, if the cloud service pro-
vider ’ s RAID storage system fails to properly mitigate a hard disk failure and renders
application data unavailable for a period, then that downtime should be attributed to
the cloud service provider. Likewise, if the cloud service provider ’ s hardware experi-
ences epidemic hardware failures well beyond the prescribed failure rate (e.g., as
indicated in the SLA), then the application supplier should not be held accountable

194 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY

for the excess downtime resulting from the application ’ s high availability mechanisms
being forced to activate frequently, thus accruing more than the budgeted amount of
hardware - attributed service downtime. Alternately, if the cloud service provider ’ s vir-
tualized platform management software fails to maintain proper control of their plat-
form infrastructure and meet the needs of the application VM instances, then it will be
very diffi cult for the application supplier ’ s software to recover service in the required
amount of time (e.g., in seconds). Thus, application suppliers should retain a modest
cloud platform downtime budget to cover detecting and recovering from ordinary cloud
provider platform failures. However, since extraordinary cloud service provider failures
are beyond the reasonable ability of application software to address rapidly and auto-
matically, that downtime should be assigned to the cloud service provider rather than
the application software. The canonical cloud - based application budget should include
a modest allocation for application recovery from ordinary cloud service platform
failures, but no application - attributable downtime need be budgeted for planned and
procedural downtime of the cloud platform because that is entirely the responsibility
of the cloud service provider unless there are application specifi c mechanisms built in
to the planned operations, such as volatile data synchronization.

 Cloud deployment introduces expectations for the application to support rapid
online elasticity, service orchestration, and perhaps live migration of VM instances to
enable the cloud service supplier to better manage their physical resources. By defi -
nition, live migration and online capacity changes are executed while the system is
online and servicing users, so any failure that impacts service availability for those
users should be counted as product - attributed downtime. Although the root cause of
product - attributable failures of elastic growth, elastic degrowth, live migration, and
other IT service management (ITSM) activities is ultimately likely to be software, the
authors recommend creating a new downtime category called “ cloud service manage-
ment. ” As this new category is an evolution of the traditional application software
related planned and procedural category, that downtime allocation is carried forward
into “ application - attributable cloud maintenance activities. ” In addition, as the applica-
tion software supplier is not generally accountable for planned and procedural down-
time of the cloud service platform, the downtime that was used for product - attributable
planned and procedural downtime of the virtualized platform in Section 10.3.2 can be
reallocated to application - attributable cloud maintenance budget to help cover the
additional downtime due to elastic growth and degrowth and other cloud - related main-
tenance actions. The 60 seconds budgeted for product - attributed cloud service manage-
ment downtime will likely be subdivided by activity such as elastic growth and degrowth
versus software release management activities and so on.

 A canonical application - attributable downtime budget for a “ fi ve 9s ” cloud - based
application is given in Table 10.3 .

 Note that while the risk of failure — and expected recovery time — for any particular
ITSM operation (e.g., elastic capacity growth) should be fairly constant, increasing the
frequency of ITSM actions naturally increases the likelihood of service downtime. For
example, if the application supplier estimates one elastic capacity change per week will
produce a long - term average of 10 seconds of prorated product - attributable service
downtime per application instance per year, then executing an average of two elastic

SYSTEM DOWNTIME BUDGETS 195

 TABLE 10.3. Canonical Application - Attributable Cloud - Based Five 9 ’ s Downtime Budget

 Application - Attributable Downtime Category

 Annualized Target
for 99.999%

 % Seconds Minutes

 Cloud platform attributable — target: 30 seconds = 0 minute 30 seconds
 Application downtime recovering from ordinary XaaS
failures — service downtime for application to detect and
recover from ordinary XaaS platform failures.

 30 0.50 10

 Software attributable — target: 225 seconds = 3 minutes 45 seconds
 Application software failures — service downtime due to
software failures of platform and/or application software.

 225 3.75 71

 Cloud maintenance attributable — target: 60 seconds = 1 minute 0 second
 Product - attributable cloud maintenance activities —
 chargeable service downtime for:
 • elastic capacity growth and degrowth;
 • software upgrade, update, retrofi t, and patching
 • live migration; and
 • other IT service management activities.

 60 1.00 19

 Total 315 5.25
 Availability 99.999%

capacity changes per day is likely to accrue roughly an order of magnitude more service
downtime. Thus, suppliers should make reasonable assumptions for the rate of ITSM
actions and accept accountability for meeting downtime expectations based on those
assumptions. If the cloud consumer or cloud service provider performs more ITSM
actions than were reasonably assumed, then the consumer or service provider should
be account able for the excess downtime.

 10.3.5 Summary

 Table 10.4 summarizes the evolution of nominal downtime budgets proposed by the
authors from a traditional fi ve 9 ’ s budget to virtualized deployment (e.g., hardware
independence or server consolidation usage scenario) to cloud deployment. The key
insight of this table is that downtime allocations stay fairly consistent:

 • Hardware related failures still occur and accrue about 10% of overall service
downtime.

 • (Unplanned) software failures still occur and should accrue about the same
amount of overall (prorated) service downtime.

 • Product/application - attributed service management (e.g., procedural and mainte-
nance) activities still carry some downtime risk.

196 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY

 TABLE 10.4. Evolution of Sample Downtime Budgets

 Sample “ Five 9 ’ s ” Product or Application - Attributable Downtime Budgets
 Annual
Down

Minutes %
 Traditional
Deployment Virtualized Deployment Cloud Deployment

 Hardware related — target: 30 seconds = 0 minute 30 seconds
 Hardware failure
downtime — service
downtime triggered
by hardware failures.

 Virtualized hardware
platform downtime —
 service downtime
attributed to virtualized
hardware resources (e.g.,
virtual CPU, memory,
disk and networking).

 Application
downtime
recovering from
ordinary XaaS
failures — service
downtime for
application to
detect and recover
from ordinary
XaaS platform
failures.

 0.50 10

 Software attributable — target: 225 seconds = 3 minutes 45 seconds
 Application software failures — service downtime due to software failures of
platform and/or application software.

 3.75 71

 Procedural and maintenance attributable — target: 60 seconds = 1 minute 0 second
 Successful scheduled
activities — service
downtime “ by
design ” for successful
upgrade, update,
retrofi t, hardware
growth, and other
scheduled or planned
maintenance
activities.

 Application software -
 related planned and
procedural downtime —
 product - attributable
service downtime
attributed to successful
and unsuccessful
planned and procedural
activities associated with
application software.

 Product -
 attributable cloud
maintenance
activities —
 chargeable service
downtime for:
 • elastic capacity

growth and
degrowth;

 • software
upgrade, update,
retrofi t, and
patching

 • live migration;
and

 • other IT service
management
activities.

 1.00 19

 Unsuccessful
procedural
activities — service
downtime attributed
to unsuccessful or
botched maintenance
activities, such as
upgrade, update,
retrofi t, hardware
growth, and
provisioning.

 Virtualized platform -
 related planned and
procedural downtime —
 product - attributable
service downtime
attributed to successful
and unsuccessful
planned and procedural
activities associated with
the virtualized hardware
platform.

 Total 5.25
 Availability 99.999%

END-TO-END SOLUTIONS CONSIDERATIONS 197

 10.4 END - TO - END SOLUTIONS CONSIDERATIONS

 In engineering, a solution is a design that fulfi lls (solves) the requirements (constraints)
of a business need (problem). In this context, a solution refers to an arrangement of
products, facilities, policies, and services that fulfi lls an information related need. In
the context of the eight - ingredient model presented in Section 3.2 , a solution consists
of hardware, software, networking (both applications protocols and IP), power, environ-
ment, humans, and policies. As a practical matter, solutions largely integrate existing
and new products (hardware plus software and application protocols), which are typi-
cally installed in existing data centers (environments with power and IP networking)
that communicate over largely existing IP networks and often leveraging standard
application payload syntaxes and semantics. The value add of the solution is exactly
how these ingredients are integrated, as well as the policies that govern how these
ingredients will function and be operated, administered, maintained, and provisioned
by human staff. Solution design for reliability (discussed in Chapter 13) assures that
the integration of these eight ingredients to meet a business need for information or
communications meets the expectations for service reliability and service availability.

 10.4.1 What is an End - to - End Solution?

 An end - to - end solution includes the equipment and facilities that connect an end user
to an application instance hosted in a data center. Figure 10.4 illustrates a sample end -
 to - end solution for a user accessing an application instance via a smartphone. For the
user to successfully access the application, all of the following components and facili-
ties must be available:

 • End User Device (smartphone, in this case) . Must be fully operational, meaning
that hardware and software must be up, battery must be adequately charged,
business arrangements (i.e., a service contract) must be in place to assure access
to a wireless network, and so on.

 Figure 10.4. Sample End - to - End Solution.

Public
Internet

Wireless
Carrier’s
Network

Backhaul
Network

IaaS
(Cloud)

Data Center

198 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY

 • Wireless Base Station . At least one of the carrier ’ s wireless base stations with
suffi cient capacity and acceptable wireless coverage to the user ’ s device must be
available.

 • Wireless Backhaul . Facilities and equipment must be available to backhaul IP
traffi c from the carrier ’ s base station to their core network.

 • Wireless Carrier ’ s Core Network . Must be available to pass traffi c to and from
the public Internet.

 • Public Internet . The Internet is not a single monolithic entity, but rather an
internetworking arrangement between many network operators. In this context,
 “ public Internet ” is shorthand for the one or more service providers that carry IP
traffi c between the wireless carrier ’ s core network and the data center hosting
the application instance serving the user. Note that high reliability data centers
will be engineered with connections to several Internet service providers, and
wireless carriers will also have network connections to multiple internet service
providers. Thus, there are likely to be several redundant IP paths to connect the
end user ’ s wireless carrier ’ s core network with the data center hosting the appli-
cation instance serving the end user.

 • Data Center Infrastructure and Facilities . The data center hosting the user ’ s
application instance, as well as routers, security appliances, load balancers,
compute and storage servers, IP infrastructure, and so on, must be available.

 • Target Application . Obviously, the application itself must be available to serve
requests from the end user.

 Thus, the service reliability, availability, and latency experienced by the end user can
be impacted by far more than merely the application instance itself and the data
center hosting the application instance. In fact, equipment and facilities closest to the
end user tend to have less redundancy and lower reliability than equipment and facili-
ties in the core of the network and in cloud data centers. For example, while there is
often full redundancy in IP networking equipment and facilities in high reliability
data centers and carrier ’ s core networks, an end user often has a single (nonredundant)
device to access a service with, sometimes has patchy wireless coverage to one,
or perhaps several base stations, and each base station may backhaul traffi c to the
wireless carrier ’ s core network over infrastructure that could be simplex (i.e.,
nonredundant).

 10.4.2 Consumer - Specifi c Architectures

 Cloud computing facilitates more diverse solution architectures than were traditionally
deployed. For example, one can imagine an enterprise opting to use cost - effective
compute resources offered by a regional cloud service provider but choosing to main-
tain enterprise data in their private data center. Applying this requirement to the
canonical deployment model of Figure 10.1 yields Figure 10.5 . While the assumed
customer - specifi c requirements need not change the solutions elements (e.g., the same

END-TO-END SOLUTIONS CONSIDERATIONS 199

database server may be used), the customer specifi c requirements do add the following
elements to the critical service delivery path:

 • wide area network (WAN) connectivity from public data center hosting applica-
tion instances to private data center hosting enterprise data;

 • second pair of routers in the private data center hosting enterprise data;

 • private data center power, environment, and interconnection facilitie;s;

 • second pair of security appliances in the private data center; and

 • second pair of load balancers in the private data center.

 Adding more equipment and facilities to the critical service delivery path naturally
increases the risk of service unavailability due to failure or unavailability of those
additional elements.

 10.4.3 Data Center Redundancy

 Cloud computing makes it easier to deploy an application to multiple data centers
because the cloud consumer avoids the huge capital expense of building a second data
center and merely pays for the resources actually used in each data center. Because data
centers are inherently subject to external and force majeure risks, as well as ordinary
failures, the best practice is to deploy redundant instances of critical applications to a

 Figure 10.5. Sample Distributed Cloud Architecture.

Public
Internet

Routing
Perimeter
Security

Load
Balancing

Application
Front End

Application
Back End

Data
Center

Power
Environment

Interconnection

Public
Internet

Routing
Perimeter
Security

Load
Balancing

Database
Server

Data
Center

Power
Environment

Interconnection

Public cloud
data center

hosting
application
instances

Private cloud data center
hosting enterprise’s data

200 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY

geographically separated data center to assure that user service can be promptly recov-
ered following a disaster or catastrophic failure. When properly confi gured, geographic
redundancy can mitigate at least some of the service downtime accrued by applications
deployed in individual data centers, as discussed in Chapter 9 , “ Geographic Distribu-
tion, Georedundancy, and Disaster Recovery. ” Section 11.2 discusses how to maximize
service availability across multiple data centers.

 Redundant data centers also permit a variety of service recovery strategies to
mitigate critical failures of applications or equipment in a data center. Consider Figure
 10.6 , in which the canonical data center application of Figure 10.1 is deployed in
both cloud data center “ A ” and cloud data center “ B. ” If the application back - end
servers in site “ A ” become unavailable due to duplex/multiple failure (or other reason),
then the application front - end servers in site “ A ” can redirect their traffi c to back -
end servers in site “ B, ” which will be supported by database servers in site “ B, ” thereby
offering service continuity for active users. High availability solutions will be
architected to rapidly locate and use available resources to mitigate service impact of
failures

 Solutions will also distribute applications across multiple data centers (e.g., in
multiple regions) to improve the quality of experience for globally distributed end users.
With appropriate engineering, these globally distributed data centers can provide both
business continuity via disaster recovery and boost service availability by mitigating
application or facility failures.

 Figure 10.6. Sample Recovery Scenario in Distributed Cloud Architecture.

Public
Internet

Routing
Perimeter
Security

Load
Balancing

Application
Front End

Application
Back End

Database
Server

Data
Center

Power
Environment

Interconnection

Public
Internet

Routing
Perimeter
Security

Load
Balancing

Application
Back End

Database
Server

Data
Center

Power
Environment

Interconnection

Primary Cloud Data Center “A”

Redundant Cloud Data Center “B”

ATTRIBUTABILITY FOR SERVICE IMPAIRMENTS 201

 10.5 ATTRIBUTABILITY FOR SERVICE IMPAIRMENTS

 As explained in Section 3.3.6 , “ Outage Attributability, ” the telecommunications indus-
try has traditionally classifi ed service outages into three buckets:

 • Product - or supplier - attributable events , such as software and hardware
failures;

 • Customer or service provider - attributable events , such as human errors by cus-
tomer ’ s or service provider ’ s staff when provisioning services or performing
maintenance actions;

 • External - attributable events , such as lightning, accidents, or deliberate acts
by third parties, and natural disasters that damage network facilities and
infrastructure.

 The cloud computing service model is inherently more complicated than traditional
telecom networks because:

 1. accountability previously held by customer or service provider is often split in
cloud context between the cloud consumer and the XaaS cloud service provider;
and

 2. many more service providers may be in the service delivery path.

 Thus, the simple three bucket attribution model is no longer suffi cient. The authors
offer the following more comprehensive attributability model for cloud - based services.
While it may be appropriate to add additional buckets or consolidate some buckets
based on the deployment model or other details of a particular cloud based service,
these categories are a useful starting point.

 • End User Attributable . Some service impairments will be attributable to
operation, confi guration or failure of the end user ’ s device. For example, service
delivery will be impacted if a user operates their wireless device to the point
of battery exhaustion. This category also includes user equipment that is in
front of the commercial access network serving the end user. For example, if
the end user ’ s microwave oven impacts the Wi - Fi link between their wireless
device and their Wi - Fi access point, then that impairment would be end user
attributable.

 • Access Network Attributable . The end user ’ s IP traffi c is carried by a service
provider over LTE, 3G, DSL, GPON, cable, satellite, or some other wireless or
wireline IP access technology to the IP WAN that connects to the IaaS provider ’ s
data center. Access and backhaul networks are inherently subject to facility and
infrastructure failures due to equipment failure, accidents, lightning and so on.
While the specifi c access network outage events might be product attributable,
service provider attributable, or external attributable, that detail is unimportant
to the end user; regardless of the root cause, their service was impacted.

202 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY

 • WAN Attributable . Typically, one or more Internet providers will carry the end
user ’ s IP traffi c from their ISP ’ s access network to the IaaS data center hosting
the application. Note that while IP packets may fl ow across several carriers ’
networks, the IaaS data center may be served by multiple carriers, and each of
those carrier ’ s core IP networks is likely to include redundant facilities and equip-
ment. Thus, despite the technical and commercial complexity of WAN network-
ing, this category is likely to contribute little service impairment for applications
hosted by top - tier IaaS service providers.

 • Cloud Service Provider Attributable . Individual data centers and IaaS/platform
as a service (PaaS) infrastructure are inherently at risk of catastrophic failures
that impact availability and reliability of applications hosted in those
data centers.

 • Application Software (or Product) Attributable . Defects in the application soft-
ware, including software provided by software as a service (SaaS) service provid-
ers and software suppliers, can cause reliability and availability impairments.

 • Cloud Consumer Attributable . Errors by the cloud consumer to properly provi-
sion, confi gure, or operate their application can directly impact service offered
by end users. For example, if user account data are misconfi gured by cloud
consumer ’ s provisioning data entry staff, then users might be erroneously denied
access to services that they are entitled to.

 Note that in some cases, a single organization may be accountable for more than one
attributable category. For example, a telecom service provider may be accountable for
both the access network and the WAN, and an application service provider may be
accountable for both the cloud consumer and application software categories.

 While this attribution framework is not perfect for every type of cloud - based
application with every service and deployment model, it is a reasonable starting point.
For example, specifi c applications may add additional attribution categories (e.g.,
external attributable for force majeure and other events that are beyond the reasonable
control of any of the explicit parties in the basic attribution framework).

 Specifi c outage responsibilities will vary based on both the cloud service model
(IaaS, PaaS, and SaaS) and contractual terms between the cloud consumer and cloud
service provider. Figure 10.7 visualizes hypothetical outage (and hence downtime or
availability) accountability for key elements in the service delivery path of a cloud -
 based application offered by an IaaS or PaaS provider from a single data center. Actual
accountabilities will vary based on contractual agreements between cloud consumers
and their cloud service providers. Consider accountability on an element - by - element
basis:

 • Routing . Cloud service provider is typically responsible for IP routing and con-
nectivity throughout the data center to the demarcation point with one or more
Internet access providers.

 • Data Center . Cloud service provider is responsible for all aspects of data center
operation.

ATTRIBUTABILITY FOR SERVICE IMPAIRMENTS 203

 • Perimeter Security . While the cloud service provider is typically responsible
for the perimeter security element hardware and software, cloud consumers have
at least partial responsibility for confi guring the perimeter security, such as con-
fi guring what traffi c is allowed to pass through the security perimeter and opening
fi rewall pinholes.

 • Load Balancing . Cloud service providers often take responsibility for load bal-
ancing hardware and software, but expect the cloud consumer to appropriately
confi gure the load balancers so that traffi c is directed to operational application
front - end server instances.

 • Application Front - End, Back - End and Database Server . Cloud service provider
is responsible for all aspects of server hardware and virtualization platform.
More or less application software will be supported by the cloud service provider
depending on the particulars of the IaaS, PaaS, or SaaS arrangement. There may
be more or less cloud - consumer - specifi c application software running above the
cloud service provider ’ s software depending on the specifi cs of the consumer ’ s
application; responsibility for that software may be retained by the system inte-
grator or distributed across several software suppliers and/or retained by the
cloud consumer themselves. Responsibility for provisioning and correctness of
application data is retained by the cloud consumer, while the cloud service pro-
vider has responsibility for assuring that data written to virtualized storage are
continuously available.

 Figure 10.7. Simplifi ed Responsibilities for a Canonical Cloud Application.

Data

Software

Hardware

Public
Internet

Routing
Perimeter
Security

Load
Balancing

Application
Front End

Application
Back End

Database
Server

Data
Center

Power
Environment

Interconnection

Cloud Service Provider is responsible
for routing and IP connectivity, data

center, all hardware (including
storage), all software on some elements

(e.g., security devices), and some
software on other elements (e.g.,

virtualized servers

Cloud Consumer is
responsible for

configuration and
application data, as
well as mitigating

external attributable
outages

Application
Software (or
Integrator)

Supplier may be
responsible for
some software

running

204 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY

 10.6 SOLUTION SERVICE MEASUREMENT

 Characterizing reliability and availability of network - based user services is inherently
complex because end users are separated from the running application instances via
IaaS data center infrastructure, WAN facilities and infrastructure, backhaul networking,
wireless or wireline access, and some user equipment, as illustrated in Figure 10.4 .
Different users are likely to access the service via different devices (e.g., smartphones,
tablets, laptops, and set - top boxes) over different wireless or wireline access networks
operated by different service providers. Popular and highly available applications are
likely to be offered from several geographically distributed data centers, so individual
users will be served from different application instances running in different data
centers. As these different data centers will be geographically distributed, various WAN
facilities and infrastructure will be engaged to pass IP traffi c between the end users ’
ISP and the IaaS data center serving them.

 A key service measurement challenge is deciding where in the service delivery
path to collect data because this drives how much of the end - to - end impairments are
covered by the measurement. For the most expansive end - to - end measurement, service
measurement data can be gathered from end users ’ devices (e.g., smartphones and set -
 top boxes) to integrate the impact of all service impairments across access, backhaul,
WAN, IaaS data center, and application instances. Unfortunately, it is inherently diffi -
cult to determine and attribute the root cause of any service impairments based on
end device data because the impact of so many elements and facilities is implicitly
convolved together. At the other extreme, one can query or probe specifi c application
instances from within the data center hosting the application ’ s VM instances to deter-
mine their reliability and availability as seen from within the data center hosting the
specifi c application instance. While this type of focused local measurement makes it
very easy to characterize the reliability and availability of specifi c application instances,
it does not reliably estimate the true end - to - end service quality, reliability, and avail-
ability experienced by end users.

 A common engineering compromise is to query or probe all nominally operational
application instances from a single fi xed site (e.g., the cloud consumer ’ s enterprise
network or a specifi c cloud data center) to characterize the service likely to be experi-
enced by end users with the highest quality IP networking service. End users with
wireless access will undoubtedly experience somewhat poorer service quality due
to networking impairments associated with wireless networking technology, service
quality and coverage issues with their wireless service provider, and other issues
(e.g., battery exhaustion of their wireless device). Nevertheless, data from a fi xed site
outside of the target data center offer a good reference point to characterize service
reliability.

 10.6.1 Service Availability Measurement Points

 As shown in Figure 10.8 , there are three natural points to consider the measurement of
service availability of a cloud - hosted application:

SOLUTION SERVICE MEASUREMENT 205

 • Measurement Point 1 (MP 1): Component Instance Availability . Product -
 attributable service availability for each component or system critical to applica-
tion service delivery in the cloud data center. An application ’ s measurement
should be taken with minimal IP routing, switching, and facility infrastructure
between the server hosting the application and the measurement point to elimi-
nate all impairments not associated with the application and directly supporting
hardware. MP 1 ratings for routers, security appliances, load balancers, and other
infrastructure confi gurations can be considered separately. MP 1 does not con-
sider the service availability benefi t of georedundancy.

 • Measurement Point 2 (MP 2): Primary Data Center Service Availability . All
causes application service availability per data center seen by the public internet
(i.e., on the carrier side of the cloud data center ’ s router). MP 2 characterizes the
performance of individual application (or solution) instances along with the
performance of the hosting data center, but MP 2 does not consider the service
availability benefi t of georedundancy.

 • Measurement Point 3 (MP 3): Aggregate Service Availability . Service avail-
ability across multiple data centers to mitigate any impairment of individual
application instances, IP equipment and facilities, and data center infrastructure
(including power and environmental factors) that may impact any single data
center. MP 3 incorporates the service availability benefi t of georedundant appli-
cation instances deployed across multiple cloud data centers.

 MPs 1 and 2 can be easily overlaid onto the canonical data center deployment
of Figure 10.1 to create Figure 10.9 . For simplicity, we consider the performance of

 Figure 10.8. Recommended Cloud - Related Service Availability Measurement Points.

Public
Internet Cloud Data Center “B”

Data center infrastructure,
including power

IP Equipment
and Facilities

Application
Software

Cloud Data Center “A”

Data center infrastructure,
including power

IP Equipment
and Facilities

Application
Software

MP 1:
Component

Instance
Availability

Product
attributable
(hardware

plus software)
service

availability of
individual

application
instances

MP 3: Aggregate
Service Availability

All causes service
availability seen by any
(all?) end users across

MP 2: Primary Data
Center Service

Availability

All causes service
availability at edge of
each cloud data center

206 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY

application front - end servers, back - end servers, and database servers separately, as well
as routers, load balancers, and security appliances. One can thus see in Figure 10.9 how
MP 2 is logically the sum of MP 1 values of all elements in the service delivery path,
as well as additional downtime associated with the data center itself and human opera-
tions and provisioning of all equipment, facilities, and applications.

 MP 3 is inherently more complex and subtle to model and understand because it
integrates the benefi ts across data center redundancy, as well as sophisticated service
load distribution strategies and client - initiated recovery mechanisms. In some cases,
georedundant recovery is performed by the client, such as when the client times out
(or explicitly cancels) transactions to one data center and retries their service request
to a different IP address for a georedundant data center. In other cases, like the example
of Figure 10.6 , more sophisticated recovery strategies are employed. Thus, MP 3 is
impacted not only by the fundamental rate of critical MP 2 failures but also by:

 • the speed and accuracy of detecting MP 2 impairments;

 • the georedundant recovery latency and effectiveness; and

 • any potential user service disruption when user service is migrated back to the
recovered primary data center.

 Predicting MP 3 is a subtle and complex subject that is considered in [Bauer11] .
 In addition to these general measurement points, there is the overall end - to - end

service availability. Overlaying MP 1, MP 2, and MP 3 from Figure 10.8 onto a general-
ized version of Figure 10.4 produces Figure 10.10 , which highlights the scope of
the end - to - end service availability, which the authors will call measurement point 4

 Figure 10.9. Canonical Example of MP 1 and MP 2.

Public
Internet

Routing
Perimeter
Security

Load
Balancing

Application
Front End

Application
Back End

Database
Server

Data
Center

Power
Environment

Interconnection

MP 1―Component
Instance Availability

MP 2―Primary Data
Center Service

Availability

Service Release, Delivery,
Control, and Resolution Processes

MANAGING RELIABILITY AND SERVICE OF CLOUD COMPUTING 207

(MP 4) for end - to - end service availability . Operationally, MP 4 integrates the MP 3
aggregate service availability across georedundant data center metric with the end - to -
 end access, backhaul, and wide area networking between the user ’ s equipment and the
cloud data center serving the user. MP 4 is obviously highly dependent on the particulars
of the access network serving the end user, so different end users, even in the same
geographic area, might experience very different MP 4 performance.

 MP 4 performance is naturally impacted by the physical location of each individual
end user and the networking equipment and facilities between them and the serving
cloud data center. For example, the quality of service experienced by a user via their
smartphone on the streets of London for a cloud application served from a data center
in the United Kingdom may be very different from the quality of service experienced
via the same smartphone in, say, East Africa. While two cloud data centers is the
minimum number necessary to enable good business continuity and disaster recovery
for critical services, far more (smaller) cloud data centers can be distributed logically
and physically closer to end users, thereby boosting users ’ quality of experience by
shortening transport service latency. In addition to shortening transport latency, the
shorter end - to - end service delivery path to the closest (small) distributed data center
instance should boost service availability be eliminating removing WAN facilities and
infrastructure, which are inevitably subject to failure and contribute downtime.

 10.7 MANAGING RELIABILITY AND SERVICE
OF CLOUD COMPUTING

 The remainder of the book is organized as follows:

 • Chapter 11 , “ Recommendations for Architecting a Reliable System, ” presents
architectural recommendations to maximize the service reliability and availabil-
ity of virtualized applications and cloud - based solutions.

 • Chapter 12 , “ Design for Reliability of Virtualized Applications, ” explains
how design for reliability diligence should be altered to assure that virtualized

 Figure 10.10. End - to - End Service Availability Key Quality Indicators.

WAN or
Public

Internet

Cloud
data

center
MP 3:

Aggregate
Service

Measurements

MP 4: End-to-
End Service

Measurements

MP 2: Primary
Data Center

Service
Measurements

Wireless
Access

Network

Backhaul
Network

Cloud
data

center

MP 1: Single
Component

Instance
Measurements

208 APPLICATIONS, SOLUTIONS, AND ACCOUNTABILITY

applications can meet, and perhaps exceed, the availability expectations of tra-
ditional application deployments.

 • Chapter 13 , “ Design for Reliability of Cloud Solutions, ” explains how traditional
solution design for reliability diligence should be tailored so cloud based solu-
tions can meet or exceed the service reliability and availability expectations of
traditional solution deployments.

 • Chapter 14 , “ Summary, ” reviews the key insights of Part I, “ Basics, ” and Part II,
 “ Analysis, ” and summarizes the key take aways of Part III, “ Recommendations. ”

209

 The earlier chapters provided reliability and availability analyses for virtualization and
cloud, as well as a lower level analysis of key areas, such as software, hardware, capac-
ity, and service orchestration. The purpose of this chapter is to draw from the informa-
tion in the earlier chapters to provide recommendations for architecting a highly reliable,
highly available application and solution architectures for virtualized or cloud environ-
ments. The recommendations will also provide input for specifying a design for reli-
ability framework that aligns with expectations for applications in the virtualized and
cloud environments. The chapter begins with some key architectural decisions that need
to be made, such as how to map software into virtual machines (VMs), optimize service
load distribution, and choose the optimal data management mechanism. The chapter
goes on to discuss some other key topics, such as hardware downtime, rapid elasticity,
service transition activity management, and disaster recovery. The chapter concludes
with a discussion of optimal reliability and availability of cloud - based applications.

 11.1 ARCHITECTING FOR VIRTUALIZATION AND CLOUD

 This section discusses the factors and tradeoffs to consider when architecting for
virtualization and the cloud such as designing for high availability, multitenancy, and
coresidency.

 11
RECOMMENDATIONS

FOR ARCHITECTING
A RELIABLE SYSTEM

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

210 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

 11.1.1 Mapping Software into VMs

 Virtualization provides a means of packaging software so that it may be easily installed
and scaled. One of the decisions in architecting an application with virtualization is
determining how to best map the VMs for the appropriate user model to maximize ease
in setting up redundancy, scaling, and distribution and meeting latency requirements.
Some of the factors to take into consideration are:

 • Growth within the Failure Group . If one of the components is active – standby
and the other is N + K , then the growth patterns are different for those two com-
ponents and suggest separate VMs so that another “ N ” instance can be created
without also needing to add the active - standby component as well.

 • Ease of Growth . If growth of one component always necessitates the growth
of the other, then a single VM may be more appropriate to facilitate application
scaling.

 • Architecture for the Application . If the application is made up of separate com-
ponent types, such as a front end and a back end that don ’ t share any resources,
then that might suggest a clear separation of VMs; however, if the components
do share resources or have tight latency requirements, then a single VM may
work better.

 • Affi nity and Antiaffi nity Rules . Affi nity and anti - affi nity rules guide which VMs
can be coresident on a single hypervisor and which VMs should be deployed
on different hypervisor instances on physically separate compute hardware. VMs
that frequently communicate with each other may coreside on the same server
to decrease message latency. Some VMs will be deployed to different hypervisors
to assure that no virtualized server becomes a single point of failure for a critical
service; see Section 12.4.1 , “ SPOF Analysis for Virtualized Applications ” for
more details. VMs such as the high availability manager and the applications
may choose to reside on different servers to reduce recovery time due to the
implications of a simultaneous failure of the VMs or the failure of the server they
are coresiding on. See Section 11.1.4 , “ Software Redundancy and High Avail-
ability Mechanisms. ”

 • Hardware Agnosticism . Although VMs should be hardware agnostic, the types
or confi gurations of the hardware nodes may need to be taken into account to
ensure the VM can perform well on that node.

 11.1.2 Service Load Distribution

 One of the key advantages of cloud computing is the ability to seamlessly distribute
service load across multiple servers and across multiple locations and even across
multiple cloud providers with the assistance of load balancers and policies. Load dis-
tribution in the cloud environment can be highly complex as it needs to take into
account factors, such as subscriber affi nity, redundancy, latency, availability, security,
regulatory issues, and capacity.

ARCHITECTING FOR VIRTUALIZATION AND CLOUD 211

 From a customers ’ point of view, service must meet their specifi c requirements,
such as latency, capacity, availability, security, as well as recovery time objective (RTO)
and recovery point object (RPO) in the case of failure. Determination of an appropriate
load distribution architecture that meets those requirements will consider:

 • number of application instances;

 • redundancy of applications and data; and

 • proximity of application instances to end users.

 Policies must be clearly defi ned to manage service distribution in accordance with
latency, regulatory and security requirements.

 When architecting the server confi guration to maximize load distribution, the
distance between data centers should be considered, particularly if there is frequent
data exchange between data centers (e.g., data synchronization across databases). When
multiple cloud data centers offer disaster recovery protection, one must also assure that
the data centers are far enough apart that no single force majeure event will impact
more than one of the data centers.

 11.1.3 Data Management

 Data — both static (e.g., subscriber data) as well as dynamic (e.g., state or transaction
level data) — are a critical part of a reliable service. Regardless of the type, all data must
be redundantly stored and managed to survive failure of a component. Static data should
be automatically provisioned to avoid errors, and any changes to the data should be
logged or journalled. Data management is very complex in the cloud environment, since
transactions can span multiple application instances and be stored in multiple locations.
There are two types of mechanisms generally used to keep data synchronized: ACID
(atomicity, consistency, isolation, and durability) and BASE (B asically A vailable, S oft
state, and E ventual consistency).

 Mechanisms that possess ACID properties ensure transactional reliability. Many
relational database systems provide ACID capabilities. These mechanisms should be
used when transactional reliability and immediate consistency are essential to meet
customer needs, as these mechanisms can be very resource intensive and may introduce
latency into transactions.

 When data consistency is required but can be performed over a longer period of
time, mechanisms that support BASE may be used to provide a simpler, less resource -
 intensive solution. Many web services can take advantage of the less complex BASE
properties. As an example, email services do not have to be instantly up to date, while
many banking services do need immediate consistency when managing their transac-
tions. Nonrelational databases, such as NoSQL (not only SQL [Structured Query Lan-
guage]), are recommended for use in cloud confi gurations to provide better performance
and scalability. NoSQL, described in [NoSQL] , is a distributed database management

212 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

system that is nonrelational and does not use SQL as its query language. It has a simple
infrastructure (i.e., based on a key - value model), has BASE properties, and thus lends
itself to lower latency and increased scalability. Facebook developed a NoSQL - type
distributed storage system called Cassandra to manage its great amounts of data across
many servers with high availability, high reliability, and scalability [CASS] . Cassandra
supports a confi gurable level of replication and a failure detection mechanism shared
by the nodes in the system, which offers a high availability solution. Google developed
its own distributed storage system called Bigtable [Bigtable] to manage large amounts
of data for many of its applications, such as Google Earth.

 Georedundancy can also enhance the availability of the data by providing data
access at multiple locations thereby mitigating the impact of a failure of one of the
locations. Data sharding or partitioning of the data into multiple smaller databases
rather than one large database is a way to provide added robustness as well as improved
performance in accessing data due to the smaller table size. An example of sharding is
to create instances of the database based on subscribers ’ last names (e.g., [A – G], [H – N],
[O – T], and [U – Z]). If the server that is storing the subscriber data for [A – G] fails, then
its redundant copy can serve the associated users; even if there is only one copy of the
[A – G] subscriber information or a dual failure occurs associated with the data for that
set of subscribers, then subscribers with the last names starting with [H – Z] should not
be impacted at all by the failure(s).

 Another performance improvement that is gaining popularity in the industry is the
use of in - memory databases. With virtualization, it is feasible that an application can
request suffi cient RAM so that it can store its data in - memory and realize improved
access latency and reliability.

 11.1.4 Software Redundancy and High Availability
Mechanisms

 Services must be architected with redundancy (even georedundancy) at the software
and hardware levels, and with high availability mechanisms at their foundation.
Robust application platforms generally provide some type of failure detection, report-
ing, and recovery mechanism as discussed in Section 3.6 , “ Redundancy and High
Availability. ” Virtualization software assisted by the hypervisor often also provides
capabilities that detect hardware failures and recover the application on a different
server as discussed in Section 5.4.2 , “ Virtualized Recovery Options. ” The hypervisor
can also detect VM failures and restart the failed VMs. In order to meet customer
reliability and availability requirements, an assessment must be performed on the
virtualized application and its internal high availability mechanisms to determine
whether it can meet customer requirements with its internal mechanisms alone or
whether the virtualization high availability mechanisms should be added to handle
those failures not being covered by the internal high availability mechanisms. If the
application does not meet availability requirements with internal mechanisms alone,
then the high availability and fault tolerance capabilities of the virtualization software

ARCHITECTING FOR VIRTUALIZATION AND CLOUD 213

should be evaluated to see whether those capabilities would better ensure that require-
ments could be met.

 Another architectural consideration for high availability management is ensuring
that the high availability manager is itself redundant, preferably active – active. In the
case of an active – standby high availability manager, if both the high availability
manager as well as the application instance were to fail at the same time due to software
or hardware failures, then the impact might be greater and the recovery time might be
longer since the high availability manager would need to recover before executing any
necessary service recovery actions.

 In addition to making sure that suffi cient high availability mechanisms are in place,
the notion of “ design for failure ” is important. Design for failure puts the emphasis on
recovering from failures rather than simply trying to prevent failures. Particularly in
the case of very large cloud - based systems, failure of some kind (software or hardware)
is very likely so it is important to be able to quickly and automatically detect and
recover from those failures. Netfl ix uses the colorful term “ Rambo architecture ” to
describe this aggressive design - for - failure vision that “ each system has to be able to
succeed, no matter what, even all on its own ” [Netfl ix10] . Failure mode effects analysis
(FMEA) of all likely failure scenarios is a best practice. It is also critical to provide
manual means of recovery in the event that the automated mechanisms are not perform-
ing properly or that the failure was uncovered, that is, not automatically detected and
recovered. Since manual intervention is often error prone (especially when executed in
the stressful context of an emergency recovery action), it is essential that procedures
are well documented and well tested by the responsible maintenance staff.

 The recovery - oriented computing (ROC) described in [ROC] also discusses the
notion of recovering from failures rather than avoiding failures. ROC emphasizes
several key areas for building robust software:

 • redundancy and isolation — isolating a failed component, letting its redundant
mate function while it is being recovered;

 • support for undo — recognizing that humans will make mistakes and providing a
way to back out of an erroneous operation;

 • diagnostic support — in order to identify the failure and its cause quickly to
facilitate recovery;

 • verifi cation of recovery mechanisms — to ensure that the recovery mechanisms
are solid and robust; and

 • model availability/dependability of the product — as a way to gauge how well it
is performing.

 In addition to the above, preventative actions should be taken such as:

 • Provide frequent backups of software images and data across sites.

 • Automate and regularly perform disaster recovery testing so that the tools and
staff are prepared in the event disaster recovery is needed.

 • Create health checks that verify the health of the system components.

214 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

 • Perform data integrity check and correction audits.

 • Verify automatic failure detection and recovery mechanisms by periodically
introducing faults or failures into the system to ensure that proper recovery takes
place. These failures may include less graceful scenarios, such as failing an
instance without fi rst draining its work load.

 Even in the best designed system, failures will occur in the hardware, software, and
network. Architecture, design, implementation, and testing must thus consider failures
at every level.

 11.1.5 Rapid Elasticity

 Rapid elasticity is a powerful cloud mechanism that can provide automatic scaling and
descaling of hardware resources resulting in more effi cient usage of resources, as well
as mitigation of the risk of overload conditions. As indicated in Section 7.4 , elasticity
can result in a VM increasing its resources (vertical growth) or an increase in the
number of VMs (horizontal growth within the data center or outgrowth into a different
data center).

 To maximize the effi ciency of rapid elasticity, resource monitoring, metrics, and
thresholds must be put in place, as well as hysteresis to detect when resources are
reaching their capacity so that the needed growth mechanism (as dictated by policy)
is triggered. For example, if an application has reached its threshold of CPU usage,
then an elasticity mechanism should be triggered to allocate additional resources.

 Although there are risks associated with rapid elasticity as explained in Section
 7.7 , there are ways to mitigate those risks. Rapid elasticity requires applications to be
designed:

 • to manage scaling and descaling;

 • to provide accurate monitoring and recording of resources and performance; and

 • to support well - defi ned policies and robust trigger mechanisms to automate and
reliably accomplish the growth and degrowth of the application.

 System testing must be performed with varying levels of offered load, generating traffi c
peaks to trigger application growth and low traffi c points to trigger degrowth scenarios
to ensure that the applications and service orchestration infrastructure can manage the
changes in confi guration reliably.

 11.1.6 Overload Control

 In the dynamic scaling environment of cloud, it is possible to reduce the amount of
time a system is in overload by taking advantage of rapid elasticity to meet spikes in
offered load. Overload control mechanisms in traditional systems issue alarms based

ARCHITECTING FOR VIRTUALIZATION AND CLOUD 215

on meeting or exceeding defi ned capacity thresholds resulting in the rejection or shed-
ding of traffi c according to the severity of the alarm. Service orchestration can take
these same alarms and trigger cloud management mechanisms, such as rapid elasticity,
to instantiate a new instance of the application and reloadshare traffi c to include the
new instance. In this way, the overload condition could be mitigated and perhaps even
eliminated. Native overload control mechanisms should still be in place for situations
in which elastically grown application capacity does not come online fast enough and
as a backup when the scaling attempt does not succeed.

 11.1.7 Coresidency

 The server consolidation model provides a means for multiple applications to reside on
the same physical server. Server consolidation has the following benefi ts:

 • Operational expenditure (OPEX) savings based on reduced ongoing support of
the equipment (e.g., reduced hardware, power, cooling, and space costs, as well
as staff to monitor and manage the equipment).

 • Capital expenditure (CAPEX) savings in the acquisition of the equipment (non-
cloud deployment, only).

 Challenges include:

 • Increased impact of server failure due to increased number of applications sup-
ported on a particular server.

 • Potential vulnerability to “ noisy neighbor ” applications that impact access to
resources for the target application.

 • Hypervisor becomes a single point of failure that impacts all VMs under its
control.

 The challenges should be mitigated through the selection of a high availability archi-
tecture (see Section 3.6 , “ Redundancy and High Availability ”) that supports server or
site failure recovery and rapid elasticity to manage changes in capacity. Thorough
robustness testing of the confi guration should be performed, including testing of the
workfl ows with failure and very high capacity loads to verify the robustness of the high
availability and elasticity mechanisms.

 11.1.8 Multitenancy

 Multitenancy entails the sharing of hardware resources by independent applications
with different user populations. Similar to the coresidency case, it is based on the server
consolidation model. Multitenancy has the same cost benefi ts as coresidency, as well
as the same challenges.

216 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

 The challenges should again be mitigated through the selection of a high
availability architecture (see Section 3.6 , “ Redundancy and High Availability ”) that
supports server or site failure recovery and rapid elasticity to manage changes in capac-
ity. Thorough robustness testing of a multitenant confi guration should be performed
to insure tenant isolation, including testing of the workfl ows under various failure
scenarios (of an individual tenant, multiple tenants, and the entire server) and with high
capacity loads (of an individual and multiple tenants) to verify the robustness
of the high availability and elasticity mechanisms.

 11.1.9 Isochronal Applications

 Isochronal applications have special needs since it is essential that they do not suffer
latencies that disrupt the quality of their service. As discussed in Section 7.6.3 , “ Service
Latency Risk, ” resource contention, real - time notifi cation latency, and virtualization
overhead can contribute latency for virtualized confi gurations. While virtualization
overhead is likely to be fairly consistent on a particular virtualized platform, latency
due to resource contention and real - time notifi cation can vary based on the behaviors
of the other applications that are sharing processing, storage, networking, and memory
resources with the target application. Latency variations over time naturally make it
harder to maintain the strict real - time requirements of isochronous services.

 Thus, architects for isochronous services should:

 1. Explicitly characterize the real - time isochronal expectations for the virtualized
platform, such as maximum notifi cation latency characterizing how “ late ” a
real - time notifi cation interrupt can be and notifi cation jitter characterizing the
maximum acceptable variation in notifi cation latency.

 2. Determine if it is technically feasible for the target platform or IaaS service to
meet these requirements.

 3. Determine what architecture and confi guration is recommended for optimal
isochronous performance on the target platform or IaaS service.

 4. Prototype and test the isochronous application service to validate the technical
feasibility of meeting the application ’ s service requirements on a virtualized
platform.

 5. If the quality of service offered by the prototype is acceptable across a range
of test scenarios, then move forward with the architecture. If the quality of
service is not consistently acceptable, then reconsider the application archi-
tecture and/or the decision to virtualize the isochronous/real - time service(s).

 11.2 DISASTER RECOVERY

 As indicated in Section 9.3 , “ Virtualization and Disaster Recovery, ” virtualization
simplifi es traditional disaster recovery by relaxing the compatibility requirements on

IT SERVICE MANAGEMENT CONSIDERATIONS 217

hardware employed on the recovery site and allowing applications to share servers and
server resources with other applications. Cloud offers additional mechanisms, such
as elasticity and disaster recovery as a service, as explained in Section 9.4 , “ Cloud
Computing and Disaster Recovery. ” To maximize the capabilities of virtualization and
cloud and minimize RTO and RPO times, the following recommendations should be
considered:

 • Ensure that target sites are located a distance away from the failed site and meet
any legal and regulatory requirements assumed for the service in accordance with
policies.

 • Choose target servers (i.e., server where recovered application will be installed)
that meet the computing, network, and storage requirements for the applications
(not usually necessary for cloud deployments).

 • Ensure that copies of the application software and data are easily available
(e.g., vaulted) for prompt recovery on the target server at the disaster recovery
site.

 • Provide disaster recovery tools and procedures that can meet the RTO and RPO
requirements for that application.

 • Ensure that disaster recovery plans are well defi ned, documented, and
tested.

 • If rapid elasticity at the georedundant cloud data center is being used for the
service to recover in a disaster scenario, then the requirements listed in Section
 9.4 must be met.

 11.3 IT SERVICE MANAGEMENT CONSIDERATIONS

 Cloud - based solutions share the same types of service management activities as tradi-
tional systems. Just as with virtualized systems, cloud - based mechanisms can be used
to mitigate service impact during these activities by manually migrating active VM
instances to other servers while maintenance activities, such as hardware or software
upgrades, are being carried out. If service must be returned to the original server, then
the VM can be migrated back to that server once the maintenance activity has com-
pleted. In order to leverage virtualization and cloud mechanisms, care should be taken
to ensure that there are available resources to support an active system while parts of
the system are undergoing maintenance (e.g., not putting the standby instance on the
same server as the active instance during an activity that requires the entire server to
be taken out of service).

 11.3.1 Software Upgrade and Patch

 Virtualization provides the ability to manage VMs on different software versions, even
on the same hardware server. This capability greatly facilitates software upgrade and

218 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

 TABLE 11.1. Example Service Transition Activity Failure Mode Effect Analysis

 Event VM or Cloud Mechanism Used
 Impact on Affected VM

Active Transactions

 HW upgrades Live migration of all VMs Minimal impact
(migration time)

 HW growth/degrowth Live migration of all VMs Minimal impact
(migration time)

 Firmware patches and
upgrades

 Live migration of all VMs Minimal impact
(migration time)

 Hypervisor software
upgrades and patches

 Live migration of all VMs Minimal impact
(migration time)

 Host OS security
patches

 Live migration of all VMs Minimal impact
(migration time)

 Application software
upgrades and patches

 Creation of new release VM
instance on server

 Minimal impact

 VM instance growth/
degrowth

 On - demand self - service No impact

patch activities through the installation of VM(s) on the new software version alongside
the VM(s) running on the old software version. The new software version VM(s) are
activated (and synched if needed with the old version), and a portion of the traffi c is
directed (e.g., via routing table updates) toward the new version instances. Once the
new version has been verifi ed to work suffi ciently well, current traffi c is allowed to
complete on the old version instances and remaining traffi c is routed to the new
instances. Service impact should be minimal with this mechanism.

 11.3.2 Service Transition Activity Effect Analysis

 A service transition activity effect analysis is usually organized as a table similar to a
FMEA (see Section 5.1.3 , “ Failure Mode Effects Analysis ”) table, with service transi-
tion activities as rows and service impact in the columns. As with a FMEA table, cells
showing unacceptable service impact should be highlighted, and system architects
should consider options to mitigate the unacceptable service impact. Table 11.1 gives
a sample service transition activity effects analysis for a virtualized application in a
cloud environment that takes advantage of the cloud mechanisms of live migration
and on - demand self service to minimize service impact. Since virtualization provides
containment for the VM instances, maintenance activities directed to a particular VM
instance should only affect that VM instance, while activities directed toward the
server, hypervisor, and host components may affect all hosted VMs. With mechanisms
such as live migration, most service transition activities are capable of being executed

IT SERVICE MANAGEMENT CONSIDERATIONS 219

with little or no service impact (e.g., service impact from time suspending active VM
to time traffi c is rerouted to newly activated VM). Note that some service transition
activities are nonservice impacting with traditional techniques; however, the table will
indicate situations in which live migration and on - demand self service are used. Hard-
ware growth and degrowth activities will likely require load balancing and rerouting
of traffi c. If degrowth takes place traffi c served by the impacted component will be
drained and redirected to remaining components. Many of the service transition activi-
ties entail upgrades (major changes) or patches (minor changes) to a particular VM (or
its components such as the application or guest OS) or shared components (such as the
hardware, fi rmware, hypervisor, and host OS).

 11.3.3 Mitigating Service Transition Activity
Effects via VM Migration

 Service transition activities for traditional deployments, such as hardware or network
upgrades may entail extensive reconfi guration and often produce service impact and
accrue service downtime that is not acceptable to the end user. Virtualization can miti-
gate downtime and reduce or eliminate any user service disruption through the live
migration of VM instances to another compatible host computer just prior to the time
the maintenance operation is to be performed. This frees up the server so that the
administrator can complete the needed maintenance when no production VM instances
are executing on the target system. The maintenance activities themselves will be less
complex since they do not have to worry about disrupting service while the activity is
being performed since service is being provided on other computers. Since the activities
are planned, the resources can be set up in advance, and a graceful migration of traffi c
can be put in place to further minimize service disruption of existing transactions. Using
live migration the hypervisor moves the VM instance upon request to a different host
computer. Live migration supports dynamic load balancing of virtualized resources and
dynamic failover support to ensure little or no service impact during the migration.
Live migration is depicted in Figure 11.1 . VMs are suspended on the source server and

 Figure 11.1. Virtual Machine Live Migration.

Hypervisor (1)

VM

App

Guest OS

Hardware (A)

Hypervisor (2)

VM

App

Guest OS

Hardware (B)

•VM Copy

•VM State

220 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

resumed on the target server. Hypervisor and VM state information is copied as well
to provide a seamless transition for users involved in active transactions during the
migration.

 The basic steps for performing a live migration are:

 1. A live migration of virtual machine hosting “ App ” between two hosts “ A ”
(active) and “ B ” (alternate) within the same failover cluster is requested.

 2. An alternate VM instance is created on host “ B. ”

 3. The initial memory state is copied from the VM instance on host “ A ” to the
VM instance on Host “ B ” over the live migration network.

 4. Any memory pages that were changed during the copy process (dirty pages)
are marked, and the pages are copied over iteratively.

 5. The VM instance is suspended or paused on host “ A, ” and the state of the VM
instance is copied to host “ B. ” The VM instance is activated on host “ B, ” an
address resolution protocol is issued to update routing tables, and the VM
instance on the “ A ” is removed. Since the VM instance on node “ A ” is not
paused until the VM instance on node “ B ” has been installed and synched with
the source, users should experience no service disruption.

 Key benefi ts of using live migration to minimize service transition downtime include:

 • Minimizing service impact on users. Service transition activities (e.g., extensive
hypervisor software, hardware or IP confi guration changes) that are traditionally
service impacting and result in long periods of downtime can be performed
without service impact, thereby meeting a common customer requirement for
continuous service availability.

 • Freeing up the server resources allocated to the VM so that it can be serviced
without trying to maintain some level of service for that VM. This should make
the procedures much less complex.

 The challenges of the live migration approach are:

 • Sometimes need to migrate back to the source server (host A) once the mainte-
nance activity has completed (e.g., due to latency concerns). This usually needs
to occur during the same maintenance interval; however, it is an optional activity
and may not be necessary in most cloud solutions.

 • The target (host B) server must have suffi cient resources to successfully manage
service during the maintenance activity.

 • The live migration must not disrupt the other VMs that reside on the server.
Robustness testing must verify that live migration of a single VM does not
adversely impact other VMs on the server. This is true of both the source as well
as the target servers.

IT SERVICE MANAGEMENT CONSIDERATIONS 221

 11.3.4 Testing Service Transition Activities

 Standard robustness testing includes routinely testing basic reliability mechanisms (e.g.,
failovers, process restarts, component reboots) and random injection of faults at various
levels (e.g., process, VM, server, network, and data) to ensure that the system can
recover properly and maintain some level of service during the recovery and that the
monitoring systems correctly report failures and status. In cloud environments, confi gu-
rations are more fl uid and apt to change once put into service. As a result, some appli-
cations would benefi t from exercising these reliability mechanisms in active systems
to make sure they are still properly functioning in the changing confi gurations under
varying traffi c patterns. Note that this may not be recommended for highly critical
services, but does provide a means of verifying that high availability mechanisms are
working well so that weaknesses are identifi ed and resolved before they result in service
outages. As an example, Netfl ix deploys their so - called “ chaos monkey ” [Netfl ix11] to
occasionally kill running VM instances in their production system, and thus assure that
high availability mechanisms are running at top performance. Per [Edberg] , Netfl ix
deploys a “ simian army ” of agents, including a latency monkey alongside the chaos
monkey, to impair aspects of their solution to assure that automatic mechanisms perform
optimally and give operations staff more practical experience with the high availability
behavior of the Netfl ix solution. [Hamilton] goes even further with the following blunt
advice: “ [I]f testing in production is too risky, [then] the script isn ’ t ready or safe for
use in an emergency. ”

 11.3.5 Minimizing Procedural Errors

 Procedural errors arise due to one or more of the following:

 • Documented or undocumented procedures executed by human was wrong,
ambiguous, or misleading.

 • User interface was ambiguous, misleading, or wrong.

 • Human erroneously entered wrong input.

 • Fatigue especially during the night shift or panic during emergency recovery.

 • Human executed wrong action, neglected to execute correct action, or executed
actions out of sequence.

 • System failed to check input or system state prior to executing requested
operation.

 Best practice for designing highly reliable procedures is to focus on three broad
principles:

 1. Minimize human interactions.

 2. Help the humans to do the right thing.

 3. Minimize the impact of human error.

222 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

 Service transition tools and procedures should have the following requirements:

 • Automation (e.g., service orchestration) shall be used to replace manual
procedures and make use of mechanisms, such as live migration when
appropriate.

 • The reliability requirements associated with the service transition activity (e.g.,
 x seconds of service downtime) must be fulfi lled.

 • Use of the Open Virtualization Format (OVF) or similar format should be used
to provide confi guration information so that it can be clearly defi ned and vali-
dated by the tools. The OVF provides a fi le format and detailed specifi cation that
makes it easy to confi gure the virtual infrastructure, including CPU, memory,
networking, and storage for each VM in a standards - based way so that it will
work under any hypervisor that is OVF compliant. By using the OVF format or
another similar format, each VM instance or infrastructure component specifi ed
can also be validated during installation. In this way, many of the errors that
occur in confi guring the system can be eliminated, lessening the probability of
procedural errors arising from errors in confi guration.

 • It must be possible to create and confi gure an updated instance of the application
while running the old version, and to seamlessly stop the old version and activate
the new once it is ready. This may be performed on the same server or on a dif-
ferent server dependent upon the type of maintenance activity and the availability
of resources.

 • Clear, accurate documentation and training must be provided for those managing
the service transition activity.

 • Thorough testing of the maintenance procedures must be performed to ensure
the procedures meet the reliability requirements for service transition activities.
Virtualization can be used to perform these procedures on a test application
instance.

 Cloud computing provides mechanisms that automate many of the procedures, such
as VM creation and installation, thereby minimizing human interactions. The mecha-
nisms try to help the humans do the right thing by providing easy - to - use graphical user
interfaces to guide the users through the operations and audits to verify their correct-
ness. Activities, such as software upgrade, may be performed on separate VM instances
on different servers so as not to disrupt the active instances that are still providing
service. This has the added benefi t of minimizing the impact of human error since
the maintenance is being performed on nonactive instances and can be validated before
activation.

 As with all procedures, it is very important to provide clear, accurate documenta-
tion and training to further mitigate the risk of procedural errors. Virtualization can be
used to practice procedures on dummy VM instances so humans can verify their under-
standing of the procedure and establish a baseline understanding of successful proce-
dural execution.

IT SERVICE MANAGEMENT CONSIDERATIONS 223

 Virtualization adds a layer of complex software between the application, platform
and (guest) OS software, and the physical hardware resources that support that VM ’ s
software. There is an inherent risk of failure when confi guring this complex software
and its associated virtual devices. Human errors introduced while executing these
procedures can result in service outages. However, the potential increase in proce-
dural failure rate due to inevitable operations, administration, maintenance, and provi-
sioning activities supporting the virtualization platform itself may be somewhat offset
by available tools that use a graphical user interface to help set up the confi gurations,
templates for the VMs, audits to validate the confi gurations, and remediation capabili-
ties in the event of failures. Thus, it is diffi cult to make general statements about the
overall procedural failure rate implications of virtualization compared with native
deployment.

 In addition to procedural failures, there may be lost or incomplete transactions
during activities, such as live migration, when traffi c is diverted from an active VM to
another instance during the maintenance activity. In the case of a successful migration,
the number of failed transactions will be minimal, but if the migration fails, there could
potentially be a large number of transactional failures.

 11.3.6 Service Orchestration Considerations

 Service orchestration can be a powerful tool for managing work fl ow effi ciently and
reliably and should be used by applications that are using rapid elasticity or anticipate
the need to create many instances of an application. Service orchestration can be used
to instantiate and provision new VM or application instances and allocate their hard-
ware resources. Conversely, it can also degrow an application instance and release the
resources. Service orchestration must robustly support the following functions:

 • Automation . Service orchestration must be able to automate tasks based on input,
such as SLAs, KQIs, and policies, and coordinate the tasks needed to instantiate
and provision a VM with its needed computing, storage, and network resources
in accordance with that input. This is true whether it is creating a single instance
of the VM or many instances of the same VM.

 • Managing Complexity . Service orchestration must ensure that resources are cor-
rectly confi gured for the VMs and do not confl ict among the VMs.

 • Manual Request . A front end must be provided to input the service requirements,
confi gurations, policies, and service requests to support initial requests for service
as well as to make manual requests to grow or degrow the service.

 Particularly because service orchestration is capable of automatically creating instances
of the application, it is important that it works fl awlessly and must be robustly tested
at high loads through normal, as well as failure scenarios verifying that policies are
followed, and activities such as growth and degrowth can be managed with no service
impact. Clear error reports must be provided if there are failures during the orchestra-
tion, and changes must be able to be reversed if there is a critical problem.

224 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

 11.4 MANY DISTRIBUTED CLOUDS VERSUS FEWER HUGE CLOUDS

 One of the essential characteristics of cloud computing is resource pooling (see Section
 1.1.3), in which a pool of servers, storage devices, and other data center resources
are deployed and shared across many users to reduce costs to the service provider and
cost to the enterprise that pays for cloud services. Fewer huge clouds may be the con-
fi guration that can best take advantage of resource pooling ’ s ability to more effi ciently
allocate resources and save installation and hardware costs, as well as the service pro-
vider ’ s ongoing operational costs for fl oor space in a data center, electricity, cooling,
and hardware maintenance. However, users who are physically farther away from a
data center are likely to experience higher service latency due to:

 • Transmission Latency . Light takes more than fi ve microseconds to travel a mile,
so transmission latency accumulates for each mile of fi ber, coaxial cable, twisted
pair, or air that data must travel between the user ’ s device and the cloud data
center.

 • Equipment Latency . Every router, switch, repeater, fi rewall, security appliance,
and other interworking element in the transmission path between the user ’ s
device and the application adds packet latency.

 Cloud data centers that are physically closer to the users they serve generally have less
transmission latency and fewer interworking elements that add packet latency.

 While it is undoubtedly simpler and probably cheaper for a cloud consumer to host
a single instance of their application in only one data center, this means that users who
are distant from that one data center are likely to experience higher service latency than
users who are physically close to the data center. The alternative is to deploy the appli-
cation to multiple data centers that are physically closer to end users. When deciding
how many data centers to use and geographically where those data centers should be
located, cloud consumers should consider:

 • Service Latency . Distributing applications to data centers physically close to end
users can reduce service latency, jitter, and packet loss and improve network
throughput by minimizing the networking equipment and facilities between the
serving data center and the end user. Having many distributed cloud data centers
provides the ability to place more servers closer to their users, while fewer huge
clouds suggest that it is more likely that many users will be further from the sites.
In addition, fewer huge clouds are likely to suffer heavier network throughput
on those sites and have a higher likelihood of overload conditions.

 • Service Reliability and Availability . Along with the improvement to service
latency indicated for many local clouds, minimizing the networking equipment
and facilities between the serving data center and the end user can also have a
positive impact on service reliability and availability by reducing the number of
components that can potentially fail while providing service to a particular user.
From a total solution point of view, fewer data centers means there are fewer

MINIMIZING HARDWARE-ATTRIBUTED DOWNTIME 225

servers to add into the availability calculation; however, the loss of any one of
those will have a bigger impact on the solution availability and greater impact
to the user population, as more of the users will have to be rerouted to another
cloud. Conversely, more local clouds means adding more servers into the avail-
ability calculation; however, the loss of any one will have less impact on the total
user population and will be less disruptive to the entire user population during
recovery. Failure scenarios, such as a site disaster, will have a greater impact
in the fewer huge cloud data centers confi guration since it is more likely that a
larger set of users will be impacted and will have to recover to other clouds,
possibly resulting in a reregistration storm or overload on the other site(s). The
more local clouds confi guration provides a more geographically diverse environ-
ment, so the likelihood that multiple local clouds are impacted by the disaster is
much less.

 There are pros and cons to each approach. When architecting for the solution, reli-
ability, availability, latency, and cost need to be taken into account and prioritized, as
well as location of the user community. For critical services where reliability, avail-
ability, and latency are of the highest priority and the user community is spread over
many locations, many local cloud data centers may be the right confi guration. If cost
is paramount or users are clustered in a few areas, fewer huge cloud data centers may
be a better fi t.

 11.5 MINIMIZING HARDWARE - ATTRIBUTED DOWNTIME

 Five 9 ’ s system availability expectations means that prorated product - attributable
service availability (i.e., hardware plus software and application software) will have
a long - term average of less than 5.26 minutes per system per year. Hardware - attributed
downtime is generally allocated one - tenth of the downtime budget for high avail-
ability systems, which gives 30 seconds per system per year to downtime attributed to
hardware. This implies that a 99.999% system is generally built on a 99.9999% hard-
ware platform. Note that fi ve 9 ’ s availability expectations for systems — or six 9 ’ s
for hardware platforms — applies only to product - attributable causes, rather than to any
of the impairments to power, networking, physical environment, human, policy, and
other factors that may contribute downtime attributed to the data center, the enterprise,
or external factors (e.g., force majeure). Thus, one must not confuse product - attributable
service availability with “ all causes ” service availability, which aggregates downtime
for product - attributable, service provider - attributable, and external - attributable causes.

 Typically, traditional systems are built with a fairly optimal hardware confi gura-
tion from which superfl uous components and assemblies have been omitted to mini-
mize the capital expense for hardware. In addition to reducing cost, this also helps to
reduce the number of hardware components that can fail (i.e., lowering the FITs
or increasing the hardware MTBF). In contrast, cloud computing — and to a lesser
extent virtualization — puts more hardware into the service delivery path to maximize

226 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

operational fl exibility of the hardware resources. For example, traditional systems may
rely on hard disks that are internal to the server blade or rack - mounted hardware so
there is minimal (failable) hardware between the processor and the nonvolatile data
storage. In contrast, since cloud computing architectures are built with resource sharing
and elasticity as primary goals, nonvolatile data storage is inherently decoupled — often
to storage area network s (SAN s) or network attached storage (NAS) — rather than
relying on nonvolatile data storage within the computer servers. Decoupling storage
from compute resources inserts IP networking infrastructure and storage control hard-
ware between the compute resource and the physical device offering nonvolatile data
storage; obviously, that IP networking infrastructure and storage control hardware is
vulnerable to failure in the cloud computing confi guration. Thus, a key architectural
question becomes: is it feasible and likely that an application executing on virtualized
hardware resources can have comparable hardware - attributed downtime to (often
simpler) traditional high availability system hardware confi gurations?

 We address this question in two steps:

 1. What contributes to predicted hardware - attributed downtime in traditional
system architectures?

 2. How can virtualization in the context of cloud computing minimize each of the
predicted categories of hardware - attributed downtime categories?

 The answers to these two questions drives recommendations for minimizing hardware -
 attributed downtime in cloud computing.

 11.5.1 Hardware Downtime in Traditional High
Availability Confi gurations

 Let us consider the canonical example of a simple high availability system architecture
built from an active – standby pair of servers. We will use the active – standby Markov
model of Figure 11.2 and make the following canonical modeling assumptions:

 • Each server has 100,000 hour MTBF (1/ λ).

 • Ninety percent of hardware failures on both active (C A) and standby (C S) units
will be detected and recovered in 15 seconds (1/ μ FO) with a success probability
of 99% (F A).

 • Uncovered hardware failures of active hardware will be detected in 30 minutes
(1/ μ SFDTA).

 • Uncovered hardware failures of standby hardware will be detected in 24 hours
(1/ μ SFDTS).

 • Manual hardware repair takes 30 minutes (1/ μ REPAIR) with a success probability
of 99% (F M).

 • Repairing duplex hardware failures takes 4 hours (1/ μ DUPLEX).

MINIMIZING HARDWARE-ATTRIBUTED DOWNTIME 227

 Solving the Markov model yields the downtime predictions in Table 11.2 ; the downtime
prediction is shown as a pie chart in Figure 11.3 .

 Now consider what each of these downtime predictions in Table 11.2 means, in
order of descending downtime contribution:

 • State 4: Active Downtime Uncovered — Nominally 84% of Predicted Hardware
Downtime . This state captures the time service is unavailable because the hard-
ware has failed but the system has not yet detected the failure and thus no
recovery actions have been taken. An uncovered failure is sometimes called a
 “ silent ” or “ sleeping ” failure, for obvious reasons. Uncovered downtime also
includes the more challenging “ dreaming ” failure situations in which the hard-
ware incorrectly reports that it is fully operational (i.e., dreaming that it is
healthy) when in fact it has failed. Note that even when it becomes apparent that
service is unavailable to maintenance engineers, the fact that the hardware failure

 Figure 11.2. Active – Standby Markov Model.

1. Duplex―
100% available

2. Simplex―
100% available

3. Standby Down
Uncovered―

100% available

4. Active Down
Uncovered―
0% available

5. Detected
Active Down―
0% available

7. Duplex
Failed―

0% available

mREPAIR

mDUPLEX

(1-FA)mFO

FAmFO
mSFDTA

mSFDTS

l l

l

(1-CA)l
(1-CS)l

6. Failover
Failed―

0% available
l

FMmFOM

(1-FM)lFOM

CAl CSl

 TABLE 11.2. Canonical Hardware Downtime Prediction

 State Time (Minutes) Percentage

 4 — Active down uncovered 0.263 84
 5 — Detected active down 0.022 7
 6 — Duplex failed 0.004 1
 7 — Failed failover 0.026 8
 Overall downtime 0.315 100

228 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

 Figure 11.3. Pie Chart of Canonical Hardware Downtime Prediction.

6—Duplex
Failed

1%

5—
Detected

Active
Down

7%

7—Failed
Failover
8%

4—Active
Down
Uncovered
84%

is not immediately visible via alarms and other standard fault management tools
means that additional time must be spent to manually troubleshoot the problem,
isolate the failure to identify the proper recovery action to execute, and at least
a portion of this excess troubleshooting time is captured in this state.

 • State 7: Failed Failover — Nominally 8% of Predicted Hardware Downtime . this
state captures the downtime when automatic switchover to standby hardware has
failed and manual recovery actions are necessary to successfully recover service
onto the standby unit.

 • State 5: Detected Active Down — Nominally 7% of Predicted Hardware Down-
time . This state captures the downtime when the high availability mechanism
functions properly: the hardware failure is promptly detected, the proper recovery
activation is executed, and service is recovered automatically in 1/ μ FO (i.e., 15
seconds).

 • State 6: Duplex Failed — Nominally 1% of Predicted Hardware Downtime . This
state captures the rare state in which both active and standby hardware units are
down simultaneously. Enterprises with good operational policies will repair
failed primary units fast enough that the window of simplex exposure (i.e., opera-
tion with a single, unprotected hardware unit) is short enough that this sequential
failure scenario is very rare. The more likely scenario is that the standby unit
experiences an uncovered hardware failure that does not promptly present an
alarm, so the system is actually simplex exposed when the active hardware unit
fails; the fi rst indication the enterprise has that the standby unit had failed is when
service fails to recover following failure of the active unit. The standard mitiga-
tion for this risk is to periodically execute routine switchovers to verify that the
standby unit is fully capable of serving users. The more frequently the routine
switchovers are executed, the lower the risk of unknowingly being simplex
exposed.

MINIMIZING HARDWARE-ATTRIBUTED DOWNTIME 229

 Now consider how each of these canonical downtime predictions is affected in a virtual-
ized cloud computing environment:

 • State 4: Active Downtime Uncovered — Nominally 84% of Predicted Hardware
Downtime . Virtualization adds an additional layer of system software between
the underlying hardware and the application software, and it is possible —
 although perhaps not likely — that the virtualization layer will identify some
hardware failures that the guest OS and platform plus application software fail
to detect. In some cases, mature native platforms or applications will include
sophisticated auditing mechanisms that continually probe the hardware to detect
failures or degraded performance before a service outage occurs; these mecha-
nisms boost the hardware failure coverage of platforms and applications that
support them. If the virtualized platform does not support the same level of
hardware auditing that was supported on the native platform and the application
does not appropriately adapt and deploy the auditing on the virtualized platform,
then the effective hardware coverage for that application could be lower (worse)
than for native confi gurations. When multiple applications are consolidated onto
a virtualized hardware platform, such as in server consolidation or cloud comput-
ing usage scenarios, then the effective hardware coverage should ideally be the
product of the hardware coverage factors of the applications sharing the virtual-
ized hardware. Hopefully, the fi rst application to encounter failed hardware on a
virtualized platform (e.g., by attempting to access a failed hardware device or
resource) should raise an alarm, and thus cause the hypervisor and infrastructure
software to proactively trigger appropriate hardware recovery actions and thereby
minimize time spent by applications in the “ active downtime uncovered ” state
due to hardware failures. Theoretically, a more diverse suite of applications
sharing hardware resources can effectively boost the hardware coverage factor
enjoyed by all of the applications. Virtualized and cloud confi gurations in which
only a single application executes on a hardware resource (e.g., a specifi c compute
blade or rack mounted server) are likely to experience essentially the same hard-
ware coverage as the application would have with native deployment on identical
hardware.

 • State 7: Failed Failover — Nominally 8% of Predicted Hardware Down-
time . Although the hypervisor adds another layer of monitoring and control in
the service recovery path, it is likely to be diffi cult for the hypervisor to differ-
entiate a failed failover from a successful failover. Thus, failed failover downtime
is unlikely to be impacted by virtualization or cloud deployment.

 • State 5: Detected Active Down — Nominally 7% of Predicted Hardware Down-
time . The downtime accrued by successful automatic failure detection and
recovery will be nominally the same for both traditional and virtualized deploy-
ments. Note that it is theoretically possible that this time might be slightly
reduced if the hypervisor detected a hardware failure faster than the traditional
deployment scenario might, such as if another application running on the hard-
ware platform possessed a faster and/or more effective hardware coverage
than the target application. In that case, the target application might enjoy an

230 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

availability boost because the neighbor applications are more vigilant than the
target application.

 • State 6: Duplex Failed — Nominally 1% of Predicted Hardware Downtime .
Cloud computing should reduce this category because a physical hardware repair
(e.g., 4 - hour MTTR action) should never be the only way to make required
hardware resources available to an application; there should always be some
spare online or nearline capacity that can be rapidly engaged to address traffi c
spikes or hardware failures. In addition, hardware resource sharing by multiple
applications should assure that even if the standby instance of the target applica-
tion is not very effective at detecting failures of the underlying hardware, one of
the active neighboring applications should promptly detect any hardware failure
and trigger the hypervisor and cloud infrastructure software to migrate appli-
cations to operational hardware so the target application spends minimal time
simplex exposed in state 2 “ standby down uncovered. ”

 In addition, virtualization enables higher availability hardware confi gurations like
dual network interface cards (NICs) and redundant array of inexpensive (or indepen-
dent) disk (RAID) to be used with unmodifi ed applications. Cloud computing elimi-
nates that capital expense that often discouraged enterprises from deploying RAIDs
and redundant networking infrastructure for traditional application deployments. More
importantly, the higher resource utilization enabled by cloud computing makes it easier
to justify deploying higher availability hardware to support more applications. For
example, with traditional application deployments, an enterprise must explicitly invest
in hardware redundancy (e.g., RAIDs and dual NICs) for the hardware resources sup-
porting each individual application. The resource - sharing aspect inherent in cloud
computing means that redundant hardware like dual NICs and RAIDs can be amortized
across more applications, thereby reducing the cost for each application to benefi t from
higher availability hardware confi gurations.

 Therefore, although virtualization and cloud computing often exposes application
instances to more fallible hardware, the overall downtime contribution from that larger
aggregate hardware failure rate is often lower than the downtime contribution of tradi-
tional deployments because of the following factors:

 1. Higher availability hardware confi gurations like dual NICs and RAID may
become more cost effective in cloud computing than in traditional deployments ,
so a system deployed with application level fi le replication in traditional con-
fi gurations may be deployed with RAID in the cloud, thereby reducing the
number of failures that must be recovered via the application level fi le replica-
tion mechanism.

 2. Higher effective hardware coverage may be experienced for both active and
standby application instances because neighboring applications can also detect
hardware failures , thus boosting the effective hardware coverage enjoyed by
individual applications

ARCHITECTURAL OPTIMIZATIONS 231

 3. Higher hardware coverage will be realized from purpose - built highly reliable
storage chosen for cloud - based solutions .

 Strategies to mitigate downtime by predicted state are summarized in Table 11.3 .

 11.6 ARCHITECTURAL OPTIMIZATIONS

 Virtualization and cloud technologies enable new architectures and business models for
cloud - based applications to provide services that are more powerful and fl exible than
with traditional methods. Since applications are no longer tied to specifi c hardware
resources, those resources can be added or removed automatically based on changing
workloads, service capacity, latency, and availability trends across the network. By
leveraging this fl exibility, optimal architectures can be designed to meet the needs of
the application based on its data (both volatile and nonvolatile), network, CPU, and
storage usage, as well as its estimated capacity, latency, availability, and reliability
requirements. Note that service providers and cloud consumers have somewhat

 TABLE 11.3. Summary of Hardware Downtime Mitigation Techniques for Cloud Computing

 Predicted
Downtime State

 Predicted Traditional
Hardware Downtime

Contribution (%) Cloud Computing Mitigation Strategies

 4 — Active down
uncovered

 84 Running diverse applications on virtualized
platform instances to maximize likelihood of
prompt hardware failure detection and having
hypervisor emulating detected hardware
failures for VM instances that may not have
already detected hardware failure.

 7 — Failed failover 8 Essentially unchanged.
 5 — Detected
active down

 7 Essentially unchanged, unless hypervisor can
detect and emulate hardware failures faster
than guest OS and application platform plus
software mechanisms can.

 6 — Duplex failed 1 Maintaining suffi cient spare online or nearline
capacity so that manual hardware actions are
never required to engage hardware resources
to mitigate a hardware failure

 Confi guring diverse application instances —
 including both active and standby instances —
 on each virtualized hardware platform to
minimize risk of “ silent ” hardware failure
impacting standby application instances

232 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

different views of optimization. Cloud consumers want to maximize the service
reliability and availability performance for their applications despite inevitable failures
at reasonable cost; cloud providers want to maximize their yield/revenue at minimum
cost while delivering acceptable (but not perfect) service quality, reliability, and
availability. This section considers optimization from the cloud consumer ’ s perspec-
tive; yield management of IaaS is not considered. A set of reliability and availability
criteria are offered, followed by a discussion of how various aspects of application
service architecture and operation can optimize those criteria. A case study for an
enterprise web server is then provided that applies many of these mechanisms and
strategies to maximize service reliability and service availability to help clarify their
usage.

 11.6.1 Reliability and Availability Criteria

 There is no one size fi ts all architecture. Various categories of applications have
fundamentally different requirements that permit different architectural options to
tolerate and mitigate inevitable failures. For instance: fi nancial applications require
very high data consistency while web search has weaker data consistency require-
ments. Likewise, anonymous services like web search that require no identifi cation,
authentication, and authorization can recover user service to redundant servers or
alternate data centers faster and easier than services that require users to identify
and authenticate themselves before being authorized to access application - and user -
 specifi c data.

 From a reliability and availability point of view, the following service reliability
and availability criteria are considered for optimization:

 • Accessibility . The service should be continuously accessible to users, which
means that no routine or emergency maintenance activity like software upgrade,
hardware replacement, network reconfi guration, capacity growth, or degrowth
should cause service unavailability or downtime for users. In other words, the
service should be continuously available 24 hours a day, 7 days a week, every
week of the year, forever; this is sometimes called 24 by 7 by forever.

 • Retainability . User sessions should be perfectly retained with no perceptible
disruptions or loss of functionality from initial service access (e.g., logon) to
orderly session completion (e.g., logoff), particularly after single - element fail-
ures or failover to another element within the data center.

 • Quality and Reliability . Correct application transaction results, streaming, and
data content, and so on, shall be delivered to the user with excellent service
quality, including low service latency. Note that data consistency can impact the
reliability of transaction results; an application that delivers a properly structured
result to a user based on inconsistent (e.g., old and no longer valid) data may not
be a correct result.

ARCHITECTURAL OPTIMIZATIONS 233

 • High Availability . Any single failure can be automatically detected, isolated, and
recovered with less than the maximum acceptable service disruption to users with
negligible if any loss of volatile context information.

 • Disaster Recovery . Application service shall be recoverable following disaster
events within the application ’ s RTO to an alternate data center, and nonvolatile
data will be recoverable within the application ’ s RPO. Unlike recoveries within
the data center, active user sessions and volatile user data will likely be lost
during disaster recovery due to the complexity and bandwidth requirements for
maintaining such data across data centers.

 • Moderate Operating Expense . Operating expense should be minimized through
frugal use of cloud resources, including timely release of cloud resources that
are no longer required, and automation of maintenance activities and recovery
actions.

 These criteria should be met with an effi cient solution that maximizes resource usage
and minimizes operating expense.

 11.6.2 Optimizing Accessibility

 Continuously accessible systems are designed with redundancy and no single point of
failure so that no planned maintenance action (e.g., software upgrade, hardware growth)
or unplanned failure forces service to become unavailable or inaccessible for an unac-
ceptable period of time. In addition to component redundancy, services are built to
detect, isolate, and recover from all types of failure, and often leverage the following
techniques:

 • Load balancers intelligently direct traffi c to an application instance based on
criteria such as application availability, workload, and proximity to user, and
dynamically update the routing information based on automatic growth and
degrowth realized by rapid elasticity.

 • All component instances are accepting some traffi c to both eliminate recovery
latency associated with startup and activation of redundant components and to
maximize the likelihood that failures are promptly detected (rather than waiting
until a “ standby ” application instance is activated to discover a previously unde-
tected failure).

 • Aggressive protocol recovery is implemented through maximum retry counts to
mitigate lost, damaged, and late IP packets.

 • Resilience is built into the service on the client side or on the application side
using one or more of the following techniques:
 � Managing resilience on the client side: Messages are buffered on the client side

and resent to the same or alternate application instance upon detection of a

234 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

failure on the targeted instance or a response time out. This is managed with
protocol support for retry (e.g., SIP and HTTP), short guard timers, limited
number of retries (improved with heuristics on retry behavior), and client
initiated recovery. [Bauer11] provides details on how to maximize recovery
time using client initiated recovery.

 � Data needed to maintain service is cached on the client or on the application
to mitigate reliance on data access during times of service or communication
disruption.

 � Applications are architected for failure as discussed in Section 11.1.4 , “ Soft-
ware Redundancy and High Availability Mechanisms. ” Since any instance can
manage the workload of another, failures are quickly detected by the client,
and traffi c is seamlessly directed to another instance for handling. The failures
are also detected and recovered internally so that the instance is once again
available for service.

 • Nonvolatile data are replicated and available to all application instances .
Data are loosely consistent — with BASE properties rather than the more
restrictive ACID properties used when the data are relatively static or the
service does not require the most recent version to operate effectively.
Services that do maintain and rely on transaction - level volatile data for reliable
service will likely require databases with ACID properties to ensure data
consistency.

 • Rapid elasticity is leveraged so that instances of the application and its resources
(including volatile and nonvolatile data) are easily and quickly added or removed
automatically based on the customer traffi c needs. This is driven through service
orchestration leveraging real - time data on traffi c loads, and operates based on
thresholds and policies. Instances and resources can be added vertically within
the server, horizontally within the data center, and through outgrowth into addi-
tional data centers as described in Section 7.4.2 , “ Elasticity Expectations. ” Hard-
ware resources, including CPU, memory, and disk storage, are added or removed
automatically based on changing application needs. This is supported by virtual
resources and managed by the hypervisor.

 • Software and hardware upgrades can be performed seamlessly . VM containment
supporting the ability to instantiate a new version of the application while the
old version is still operating and live migration providing the ability to copy
memory to another server that has an instantiated instance of the new version
of the application to support more extensive upgrades can support this capabil-
ity. Graceful termination of a VM instance is available so that transactions
are allowed to continue and terminate normally and are not lost during the
migration.

 • Procedural tasks that are complex and error prone are automated and made
robust through the addition of health checks on the hardware resources to ensure
they are ready for the procedure and audits on the data to ensure it is not cor-
rupted before or after the procedure.

 Advanced architectural techniques that optimize accessibility:

ARCHITECTURAL OPTIMIZATIONS 235

 • Clients send a single request to multiple application instances in parallel , and
use some intelligent algorithm to select the response (e.g., fi rst response, fi rst
confi rmed response, plurality, or majority vote). This technique greatly simpli-
fi es routing of requests but adds complexity in selecting and managing the
responses and reduces capacity (or increases load, depending on your perspec-
tive) because each transaction is processed by two (or more) application instances
in parallel.

 • Client applications may even establish and maintain authenticated sessions with
alternate servers to eliminate reauthentication latency if the primary server fails
and the client must redirect traffi c to the alternate server instance.

 • “ Rambo ” architecture . Systems are built to expect and tolerate some failures
that represent a degradation of some services but allow other services to perform.
This technique provides increased availability for some services but does add the
complexity of detecting, isolating the failure, deferring recovery, and determining
that service can continue despite the failure. Designing with degradation allowed
also entails understanding what the customer will tolerate for degraded services
and which services are absolutely critical and not subject to degradation. For
example, live streaming of video may be a critical service, while sorting through
supporting movie reviews is a nonessential service.

 11.6.3 Optimizing High Availability, Retainability,
Reliability, and Quality

 High availability mechanisms exist to detect, isolate ,and recover from failures. Service
architecture should be assessed using techniques such as FMEA, as discussed in Section
 5.1.3 , “ Failure Mode Effects Analysis, ” to fl esh out all possible failure scenarios involv-
ing one or more of the components and confi rm that failures can be rapidly detected
and properly handled, including preserving state and context data when applicable.
Service retainability and reliability are managed by making state or other transaction -
 related information available to other application instances from a common storage area
or by pushing state out of server instances into client and/or shared registries. Fault
tolerance mechanisms help ensure that any data (volatile as well as nonvolatile) critical
to service retainability is maintained and kept consistent.

 Overload detection and control mechanisms are put in place to manage short - term
spikes in traffi c when rapid elasticity cannot instantly accommodate changes in traffi c.
Overload mechanisms should shed or turn away some traffi c during peaks to maintain
the quality of most (or at least some) traffi c rather than degrading all traffi c or causing
a component collapse or service failure.

 11.6.4 Optimizing Disaster Recovery

 Application instances are deployed to geographically distant redundant data center(s)
to mitigate the risk of a force majeure event that renders a data center destroyed, inac-
cessible, or otherwise unavailable. Data centers are located far enough apart so that no

236 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

single disaster or force majeure event (e.g., earthquake, hurricane, and tsunami) will
impact both the primary and recovery sites. All nonvolatile application and user data
are replicated to a georedundant site frequently enough to meet the application ’ s RPO
requirement, and suffi cient resources are available in the recovery data center (e.g.,
bandwidth to replicated data, and rapid availability of compute capacity and network
bandwidth) to meet the application ’ s RTO requirement. Since incidents requiring recov-
ery to another data center are infrequent, they are generally designed to allow slower
synchronization of nonvolatile data and loss of volatile state information during the
recovery than in the intra - data center recovery cases to minimize wide area network
(WAN) traffi c between the data centers. Service architectures which include many small
data centers provide additional redundancy that can support a single data center failure,
as well as the ability to optimize service latency by routing to the data center closest
to the user. See Section 11.4 for details.

 11.6.5 Operational Considerations

 In addition to architecting, developing, testing, and deploying a robust solution, it is
essential that high - quality IT service management policies and practices be used to
manage operation of the solution. Beyond standard IT service management best prac-
tices (e.g., ITIL), the following operational topics warrant special consideration:

 • Proactive Management of Spare Online and Elastic Resource Capacity . Suffi -
cient spare online application capacity should be confi gured to simultaneously
recover from typical failure scenarios (e.g., crashed VM instance) and to accom-
modate traffi c spikes and growth. Note that the size of the spare online capacity
is infl uenced by the expected and committed elastic growth slew rate supported
by the IaaS provider and the application itself, as well as the application ’ s elastic
growth trigger points. Suffi cient spare online capacity should always be available
to assure that all users are served with acceptable service quality and latency,
even when traffi c grows and elastic growth is initiated.

 • Routine Testing of Robustness and Recovery Mechanisms . Just as periodic
disaster drills are a best practice to assure that disaster recovery mechanisms,
plans, and procedures are correct, and give staff training and practice in executing
those procedures, periodic validation of high availability mechanisms verifi es
that automatic mechanisms operate correctly and that staff can recognize suc-
cessful automatic recoveries compared with unsuccessful recoveries that require
manual corrective actions. Netfl ix ’ s chaos monkey and simian army [Netfl ix11]
are examples of the best practice for routinely testing robustness and recovery
mechanisms.

 11.6.6 Case Study

 Service reliability and availability optimization concepts are best understood via an
example. Although not all of the optimizations apply to all applications, this example

ARCHITECTURAL OPTIMIZATIONS 237

offers some specifi city and clarity to the concepts discussed previously in the case of
a particular type of application. This section will show how these key concepts might
apply to a hypothetical enterprise data centric web server application as depicted in the
reliability block diagram (RBD) in Figure 11.4 . The hypothetical applications consists
of a front - end/back - end arrangement in which front - end servers interact with client
applications (e.g., web browsers) and back - end servers mediate transactions with non-
volatile application data. A particular user of the hypothetical application instance is
served from data center “ A. ” User traffi c passes through a pair of load balancers, which
distribute requests across a pool of front - end server instances, which handle user iden-
tifi cation, authentication, authorization, session and transaction context, user interface,
and so on. Front - end server instances push copies of volatile user data into a pair of
registry servers so that if one front - end server instance fails, then any other front - end
server instance can rapidly retrieve the user ’ s volatile information from one of the
registry servers. A pool of back - end server instances operates on the application
data that is maintained in a storage array. Front - end servers pass request messages to
back - end servers that are protected with short guard timers, and a front - end can retry
a failed, lost, or late operation to another back - end server instance. Nonvolatile data
storage is maintained in a RAID storage array.

 Rapid elasticity is leveraged to improve accessibility through growth and degrowth
of resources that are in line with the changing service needs. Figure 11.5 illustrates how
the hypothetical application instance can grow horizontally. Front - end server instances
can be created or destroyed, and the load balancers will intelligently distribute the
workload across available front - end application instances. Note that even if the front -
 end server instance that was serving a particular user is destroyed to reduce front - end
capacity, another front - end server instance can seamlessly recover the user ’ s volatile
application state from one of the pair of registry servers. Likewise, back - end server
instances can be created or destroyed, and front - end server instances will intelligently
distribute their requests across the pool of available back - end servers; front - end servers
will retry requests that may have been lost if a back - end server instance was destroyed
to shrink back - end capacity.

 Figure 11.4. RBD for the Hypothetical Web Server Application.

Back-End
Server Pool

Storage
Array
(for

nonvolatile
data)

Load
Balancers

Front-End
Server Pool

Registry Servers
(for volatile data)

Data Center “A”

User

Active/
Active

Active/
Active

Load
Share

Load
Share

RAID

238 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

 If the hypothetical application needs to grow beyond data center “ A ” based on its
exceeding the capacity of data center “ A ” or to provide georedundancy for the service,
then an additional set of load balancers, front - end servers, registry servers, back - end
servers, and storage array are set up in data center “ X ” to support service outgrowth as
depicted in Figure 11.6 . The application users ’ clients must receive an indication of the
availability of the new data center via DNS, a traffi c redirection indication from the
data centers, client reconfi guration, or through other mechanisms. For example, if we
assume that each application instance is limited to a pair of load balancers and a pair
of registry servers, then when the workload approaches the limits of either of those
components the application should activate outgrowth and balance the workload to the
outgrown application instance.

 Components within each application instance rely on aggressive guard timers
and retry strategies to assure that client requests are correctly served in less than the
maximum acceptable service latency. Figure 11.7 illustrates this aggressive failure
detection and recovery by a front - end server instance “ F1 ” for a failure of back - end
server instance “ B1. ” Front - end server instance “ F1 ” receives a client request that
requires a back - end server instance to respond to a request. “ F1 ” sends a request to
back - end server instance “ B1. ” Assume that “ B1 ” fails prior to replying to a request
from “ F1. ” “ F1 ” awaits a response from “ B1 ” until a brief guard timer expires, and
then retries the request to “ B1. ” Since “ B1 ” has failed and has probably not recovered
service yet, the guard timer for the retry to “ B1 ” will also expire. Rather than making
a second retry to “ B1 ” (which is unlikely to have recovered service in another few
milliseconds if it failed to respond to the two previous attempts), “ F1 ” sends the request
to an alternate back - end server “ B2. ” Assuming “ B2 ” is up, “ B2 ” should respond
properly to the request before the guard timer expires. Note that since the guard timers

 Figure 11.5. Horizontal Growth of Hypothetical Application.

Back-End
Server Pool

Storage
Array

Load
Balancers

Front-End
Server Pool

Registry Servers
(for volatile data)

Data Center “A”

User

Note that storage within a data center can
grow either horizontally (e.g., adding or
deleting storage volumes) or vertically

(e.g., increasing or decreasing the
maximum capacity of a storage volume)

ARCHITECTURAL OPTIMIZATIONS 239

 Figure 11.6. Outgrowth of Hypothetical Application.

Back-End
Server Pool

Storage
Array

Load
Balancers

Front-End
Server Pool

Registry Servers
(for volatile data)

Data Center “A”

User

Back-End
Server Pool

Storage
Array

Load
Balancers

Front-End
Server Pool

Registry Servers
(for volatile data)

Grown Data Center “X”
Users’ clients discover

new application instance
in outgrowth data center

via DNS, explicit
redirection from existing

data centers, client
reconfiguration, or other

techniques

 Figure 11.7. Aggressive Protocol Retry Strategy.

Maximum
Acceptable

Service
(Transaction)

Latency

Back-End
Server B1Request to B1

B1 Failure

Retry request to B2

Guard
Time Out

Guard
Time Out

Guard
Time Out Response from B2

Actual
Transaction
Latency

Front-End
Server F1

Back-End
Server B2

Request retry to B1

240 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

 Figure 11.8. Data Replication of Hypothetical Application.

Back-End
Server Pool

Storage
Array

Load
Balancers

Front-End
Server Pool

Registry Servers
(for volatile data)

Data Center “A”

Back-End
Server Pool

Storage
Array

Load
Balancers

Front-End
Server Pool

Registry Servers
(for volatile data)

Data Center “B”

Nonvolatile
application

data is
replicated
between

georedundant
application
instances to

meet
application’s

recovery point
objective

Volatile
application
data is not
replicated
between

georedundant
application
instances.

were set to be much shorter than the maximum acceptable service latency, “ F1 ”
had suffi cient time to retry once to the original back - end server “ B1 ” and make one
request to an alternate back - end server “ B2. ” There are a wide variety of retry strate-
gies that can be considered; the point is that the guard timers and retry strategy
should be constructed so that failures can be detected and service recovered without
exceeding the maximum acceptable service latency so the failure is masked from
the user.

 Note that volatile data (e.g., user session state) are replicated to a pair of registry
servers so that if a front - end server instance fails and the load balancer redirects a user ’ s
request to an alternate front - end server instance, then the alternate server instance can
retrieve the user ’ s volatile data from the registry server to recover the user ’ s context to
mask the effects of the front - end server failure.

 Disaster recovery is supported via georedundancy and replication of non - volatile
application data across multiple active application instances. Accessibility is further
enhanced through replication of nonvolatile data to other data centers, allowing clients
to send requests to those active georedundant application instances. Timely replication
of nonvolatile data also factors into the RPO associated with disaster recovery. Volatile
application data is generally not replicated between data centers due to WAN traffi c
concerns. Figure 11.8 shows data replication between data centers.

 With georedundancy and data replication between sites in place, if a disaster were
to occur, disaster recovery plans and procedures can be activated automatically or
manually to recover service in line with RTO and RPO requirements. Figure 11.9
illustrates the redirection of client service to data center “ B ” when data center “ A ”
fails. As indicated, volatile data are lost since they are not replicated across sites, but
nonvolatile data are preserved up to the time of the last data synchronization between

ARCHITECTURAL OPTIMIZATIONS 241

sites. Depending upon the cloud customers ’ application requirements, the interval of
the nonvolatile data synchronization can be reduced so that minimal nonvolatile data
are lost in these situations.

 11.6.7 Theoretically Optimal Application Architecture

 The theoretical limit of service availability across a pair of elements is derived in
 [Bauer11] and elsewhere as Equation 11.1 .

 Availability Availability AvailabilityPair Element Element= × −2 22.

 Equation 11.1. Maximum Theoretical Availability Across Redundant Elements

 Essentially, this theoretical maximum assumes that a client has perfect knowledge of
element availability and thus is always able to use whichever application instance is
available at any time. The simplistic model underlying Equation 11.1 is based on the
following technical assumptions:

 1. Instantaneous detection of all failures with 100% accuracy.

 2. Instantaneous and fl awless identifi cation of the failed element so the proper
recovery action can be initiated.

 3. Instantaneous and fl awless service recovery onto the redundant element.

 Figure 11.9. Disaster Recovery of Hypothetical Application.

Back-End
Server Pool

Storage
Array

Load
Balancers

Front-End
Server Pool

Registry Servers
(for volatile data)

Data Center “A”

User

Back-End
Server Pool

Storage
Array

Load
Balancers

Front-End
Server Pool

Registry Servers
(for volatile data)

Data Center “B”

Users’ clients detect
unavailability of application

instance “A,” locate
alternate application

instance (e.g., via DNS or
application configuration

information stored on client
device) and recover service
to georedundant application

instance “B.” Note that
volatile user data is lost,

and changes to nonvolatile
data within RPO period

may be lost.

Force majeure or disaster event

242 RECOMMENDATIONS FOR ARCHITECTING A RELIABLE SYSTEM

 Figure 11.10. Optimal Availability Architecture of Hypothetical Application.

Back-End
Server Pool

Storage
Array

Load
Balancers

Front-End
Server Pool

Registry Servers
(for volatile data)

Data Center “A”

Back-End
Server Pool

Storage
Array

Load
Balancers

Front-End
Server Pool

Registry Servers
(for volatile data)

Data Center “B”

Clients maintain
authenticated sessions
with two georedundant

application instances. If
one (i.e., primary)

application instance
becomes unavailable,
then the client can

rapidly reestablish session
context with

georedundant application
instance and retry service

request.

Replication of nonvolatile
data between georedundant

application instances.

Each application
instance is fully

redundant to withstand
typical failures.

 Unfortunately, real - world applications cannot meet all of these assumptions. Mathe-
matically, this means that aggregate service availability across a pair of data centers
(measurement point 3 or MP 3) must be less than — and typically far, far less than — the
theoretical availability based on primary data center availability (measurement point 2
or MP 2). This is explicitly captured in Equation 11.2 .

 MP MP (MP3 (2 2) 2)2< × − .

 Equation 11.2. Maximum Theoretical Service Availability

 Thus, the question becomes what service architectures most closely approach the theo-
retical limit of Equation 11.2?

 Figure 11.10 illustrates a confi guration of the hypothetical web server application
with an advanced client that can approach the theoretical limit of Equation 11.2 . Essen-
tially, the client maintains simultaneous authenticated sessions with a pair of georedun-
dant application instances (i.e., in data center “ A ” and in data center “ B ”), to either
send requests to both application instances in parallel (presumably using the fi rst correct
response received) or to send requests to one application instance with short guard
timers and aggressively retry the request to the georedundant application instance if the
initial application instance failed to respond correctly before the guard timer expired.
Obviously, many traditional application protocols and client implementations will not
support failure detection and recovery strategies that are this aggressive, but one can

ARCHITECTURAL OPTIMIZATIONS 243

imagine how over time, application protocols and client implementations will evolve
to support more aggressive strategies when optimal service reliability and avail-
ability is required. This architecture also assumes full internal redundancy within each
data center and enough reserve capacity for one site to seamlessly manage all traffi c
for both data centers if one of the data centers fails meeting near perfect availability
at the expense of additional resources and complexity to ensure no loss of service
or data.

244

 While traditional applications can often be installed and run on a virtual machine (VM)
with little or no modifi cation, some additional design for reliability (DfR) diligence is
appropriate to assure that it is both feasible and likely for the virtualized deployment
to have reliability and availability as good as with traditional application deployment.
More comprehensive design for reliability diligence — especially architectural work,
analysis, development, and testing diligence — may even make it feasible and likely for
the reliability and availability of a virtualized deployment to exceed that of traditional
deployment. This chapter considers how design for reliability diligence changes for
a virtualized application compared with a traditional native deployment of that same
application.

 12.1 DESIGN FOR RELIABILITY

 Design for reliability of traditional information and computer - based systems is well
understood and documented in [Bauer10] and visualized in Figure 12.1 . The activities
of traditional design for reliability are:

 12

DESIGN FOR RELIABILITY OF
VIRTUALIZED APPLICATIONS

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

DESIGN FOR RELIABILITY 245

 • Establish reliability and availability requirements because all designs should be
defi ned by clear and verifi able specifi cations.

 • Qualitative reliability analysis assures that the high - level design is consistent
with general, qualitative reliability and availability requirements.

 • Quantitative reliability modeling and budgeting assures that it is technically
feasible for the design to achieve the quantitative reliability and availability
requirements over the long term. Budgeting quantitative targets for various
system characteristics makes it more likely that overall system level targets will
be achieved.

 • Robustness testing verifi es the effectiveness of failure containment and high
availability mechanisms by confronting the system with likely failure scenarios
to assure that the system automatically detects, contains, and recovers the failure
without unacceptable service impact.

 • Stability testing verifi es that the system is stable and meets reliability expecta-
tions under a sustained heavy and mixed traffi c load.

 • Field performance analysis compares actual fi eld performance with requirements
and modeled results. Gaps with requirements and expectations drive reliability
improvement roadmaps; gaps with model results drive refi nement of mathemati-
cal models and parameters estimates.

 • Reliability roadmapping captures planned and proposed reliability/availability
improving features, testing and other actions to mitigate gaps between customers ’
expectations and actual or predicted system performance.

 In addition, hardware reliability diligence was traditionally necessary to assure that
the hardware platform supporting the application and platform software was likely to

 Figure 12.1. Traditional Design for Reliability Process.

Establish reliability/
Availability Requirements

Qualitative Reliability
Analysis

Quantitative
Reliability Modeling &

Budgeting

Robustness Test Planning,
Execution, and Analysis

Stability Test Planning,
Execution, and Analysis

Product
Release

System design, Development, and Test Field
Performance

Analysis

Reliability Roadmapping

System
Concept

System
Design

System
Development

System
Verification

System
Deployment &

Operation

246 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS

maintain an acceptably low hardware failure rate throughout the designed service life-
time of the system.

 12.2 TAILORING D F R FOR VIRTUALIZED APPLICATIONS

 The virtualization application usage scenarios enumerated in Section 10.1 introduce
new risks to service reliability and service availability that are addressed by tailoring
traditional system DfR. Let us consider each of these usage scenarios individually:

 12.2.1 Hardware Independence Usage Scenario

 Assuming the hypervisor is very stable and offers a faithful and reliable virtualization
of the hardware platform being virtualized, the hardware independence usage scenarios
offer the following reliability risks beyond traditional application deployment:

 • Not Making Virtualized Hardware a Single Point of Failure (SPOF) . As dis-
cussed in Section 5.1.2 , “ Single Point of Failure Analysis, ” high availability
systems do not include any single points of failure. While traditional design for
reliability diligence assures that there are no SPOFs in native deployment, one
must be careful to assure that software modules that were deliberately tied to
separate hardware in native deployment to prevent SPOFs are not mapped to
VMs that could be confi gured on the same virtualized hardware platform (e.g.,
via antiaffi nity rules), thereby making that hardware platform an SPOF. DfR
treatment of this risk is covered in Section 12.4.1 , “ SPOF Analysis for Virtualized
Applications. ”

 • Meeting Hardware Downtime Budget . Reliability diligence must verify that the
expected “ hardware independence ” deployment confi guration does not accrue
signifi cantly more hardware downtime than the native deployment. This risk was
discussed in Chapter 6 , “ Hardware Reliability, Virtualization, and Service Avail-
ability ” ; DfR treatment of this risk is covered in Section 10.3.1 , “ Traditional
System Downtime Budget ” ; and design considerations were covered in Section
 11.5 , “ Minimizing Hardware - Attributed Downtime. ”

 • The Application ’ s High Availability Architecture Is Less Effective in Virtualized
Confi guration . Just as careful design and testing is necessary to verify perfor-
mance and reliability of native application ’ s high availability architecture, DfR
diligence is necessary to assure that the application ’ s high availability architec-
ture runs properly on the virtualized infrastructure, especially that it does not
confl ict with any automatic recovery or HA mechanism of the virtualized plat-
form itself. Thus, one should explicitly assure that the application ’ s HA mecha-
nism confi gured on virtualized hardware:
 1. Reliably detects all failures with latency comparable with native confi guration.
 2. Maintains acceptable service latency for failover, switchover or other recov-

ery actions on the virtualized confi guration.
 3. Properly contains failures to software modules or VM instances.

TAILORING DFR FOR VIRTUALIZED APPLICATIONS 247

 The risks that were discussed in Chapter 5 , “ Reliability Analysis of Virtualization, ” are
addressed via qualitative and quantitative analysis (Sections 12.4 , “ Qualitative Reli-
ability Analysis, ” and Section 12.5 , “ Quantitative Reliability Budgeting and Model-
ing ”) and validated via robustness testing (see Section 12.6 , “ Robustness Testing ”).

 12.2.2 Server Consolidation Usage Scenario

 Server consolidation increases the reliability and availability risks compared with
the hardware independence usage scenario (Section 12.2.1) with the following addi-
tional risks:

 • Resource sharing introduces contention risks — resource sharing between
applications — especially when resources are overcommitted to maximize resource
utilization — increases the risk of occasionally experiencing signifi cantly longer
latencies when acquiring or accessing resources. This increased resource latency
can translate to higher service latency for application users. If workloads between
consolidated applications are correlated, then service latency could degrade even
further in busy periods. While applications and platforms should be confi gured
so that literally no traffi c is served with unacceptably long service latency or ever
dropped, it is possible that the observed service latency (e.g., 50th or 95th per-
centile) will be longer in busy server consolidation scenarios compared with
simpler hardware independence usage scenarios.

 • Ineffective failure containment causes error or failure of a coresident application
to cascade and impact the other applications.

 • Resource sharing increases recovery latencies — when multiple applications
share a single hardware resource (e.g., computer server hardware), then failure
of that shared resource can cause all consolidated (i.e., coresident) applications
to simultaneously initiate recovery actions. If those consolidated applications use
other common applications, like databases or registries, then failure of the shared
hardware may push one or more of those common applications into overload
when multiple applications attempt to recover simultaneously. This may cause
some or all of the consolidated applications to recover slower than expected
as the common database, registry, or other applications take longer to serve the
aggregate recovery workload.

 These risks are primarily mitigated by proper confi guration and operation of the hyper-
visor. Thorough robustness testing (see Section 12.6) validates that these risks are
successfully mitigated.

 In server consolidation deployments, the hypervisor may also be able to occasion-
ally boost the resource allocation to a VM instance to give it more resources (e.g., CPU
allocation or network bandwidth) than the VM ’ s nominal reservation to address a traffi c
spike. This brief resource boost may sometimes make it unnecessary to activate applica-
tion overload controls because suffi cient resources are made available to serve the spike
without explicitly activating overload controls, like traffi c shaping or shifting. To take

248 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS

advantage of this capability of the hypervisor, applications must be prepared for some
variation in resource allocation.

 12.2.3 Multitenant Usage Scenario

 Although multitenant deployment of VMs permits multiple independent instances of a
single application to be consolidated onto a single virtualized platform, one must assure
that the failure of one tenant ’ s application instance is fully contained so other tenants
are not affected. This scenario increases reliability and availability risks beyond the
server consolidation case when the consolidated multitenant instances share some
resources (e.g., system confi guration data) but not other resources (e.g., tenant confi gu-
ration and user data), so rigid failure containment between tenants can be more chal-
lenging. In particular, one must assure that failure of one tenant instance does not
cascade to other tenant instances, and that service transition activities properly apply
to individual application instances rather than inadvertently impacting multiple tenant
application instances. In addition, multitenancy introduces the risk of correlated or
synchronized behaviors that can stress the underlying virtualized platform, such as
when multiple application instances execute the same recovery action or periodic
maintenance actions simultaneously.

 12.2.4 Virtual Appliance Usage Scenario

 As the virtualized appliance scenario fundamentally changes the entire industrialization
model (i.e., software packaging plus supporting materials), all aspects of application
industrialization like installation, upgrade, and license management must be re - verifi ed
to assure that the virtualized appliance distribution offers the same service reliability,
availability, and latency performance as traditional deployment.

 12.2.5 Cloud Deployment Usage Scenario

 While the earlier application deployments are statically confi gured, the cloud deploy-
ment usage model adds rapid elasticity to the mix, and thus adds the risk of elasticity -
 related failures. In addition, cloud service provisioning and orchestration, on - demand
self - service, security, and other cloud characteristics introduce risks to service reliabil-
ity, availability, and latency. Cloud deployment risks and mitigations are primarily
considered in Chapter 13 , “ Design for Reliability of Cloud Solutions. ”

 12.3 RELIABILITY REQUIREMENTS

 The market generally expects virtualized applications to deliver the same service reli-
ability and availability as that offered by traditional system deployments in which
application and platform software is confi gured directly on physical hardware (rather
than above a hypervisor). Thus, if the traditional system is expected to achieve 99.999%
product - attributable service availability, then the virtualized application is typically

RELIABILITY REQUIREMENTS 249

expected to be capable of achieving 99.999% service availability when run on a suitably
confi gured and properly operated virtualized hardware platform. Likewise, if the market
expects the traditional system deployment to achieve 99.999% service reliability (i.e.,
 ≤ 10 defects per million [DPM]), then the virtualized application should be capable
of 99.999% service reliability (≤ 10 DPM) on a suitably confi gured virtualization plat-
form. This expectation of requirements parity is presumed to apply to all reliability
requirements.

 This section fi rst considers general service availability requirements, service reli-
ability and latency, and overload requirements, and online capacity growth and degrowth
requirements. Requirements for live migration and service transition activities are then
considered, and fi nally georedundancy requirements are discussed.

 Regarding requirements notations: the “ [A | B] ” notation is used to indicate that a
requirement applies identically to both the “ A ” reading and the “ B ” reading, such as
the same requirement applies to both “ traditional system ” and “ virtualized application ”
confi gurations. A “ [C] ” notation indicates that “ C ” is optional in the requirement and
may be included when applicable, or omitted if not appropriate or not necessary. Angle
brackets “ < ” and “ > ” indicate that a quantitative value should be included in the
requirement; common recommended values are shown as “ < 99.999% > ” , and unspeci-
fi ed quantitative values are shown as “ < X > ” .

 12.3.1 General Availability Requirements

 The list below illustrates how the same general reliability requirements that apply
to traditional system confi gurations can also be applied to virtualized application
confi gurations

 1. [Traditional system | virtualized application] high availability confi gurations
shall achieve < 99.999% > product - attributable service availability in production
operation.

 2. [Traditional system | virtualized application] shall demonstrate compliance to
service reliability requirements (see Section 12.3.2) and complete stability
during at least < 72 > continuous hours of stability/endurance testing of mixed
user and operational activities running mostly at engineered capacity . “ Com-
plete stability ” means no process failures, stable resource usage, and no degra-
dation in transactional reliability, latency or throughput, and so on.

 3. [Traditional system | virtualized application] high availability confi gurations
shall support deployment with no single point of failure.

 4. The high availability [traditional system | virtualized application] confi guration
shall automatically detect and recover from any single hardware or software
failure within < X > seconds . This value < X > will be referred to as the Maximu-
mAcceptableServiceDisruption time throughout this chapter.

 5. Testing of the [traditional system | virtualized application] shall demon-
strate that all critical component failovers have service impact of less than
 MaximumAcceptableServiceDisruption.

250 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS

 6. Testing of the [traditional system | virtualized application] shall demonstrate
that at least < 95% > of likely hardware and software failures are detected and
recovered in less than MaximumAcceptableServiceDisruption seconds.

 7. Testing of the [traditional system | virtualized application] shall demonstrate
that execution of automatic switchover mechanisms are at least < 99% >
successful.

 Multitenant applications add the following general requirement:

 8. No failure of one tenant ’ s application instance shall impact service offered by
any other tenants ’ application service.

 12.3.2 Service Reliability and Latency Requirements

 While none of the virtualized application usage scenarios introduced in Section 10.1
will fundamentally impact service reliability, server consolidation and other usage
models are likely to impact service latency because of resource sharing (discussed in
Section 7.1.2 , “ Slashdot Effect ”). The magnitude of the service latency impact will vary
based on architecture and confi guration of the virtualized platform, as well as opera-
tional factors, possibly including the workload of other applications that are consoli-
dated onto the shared hardware platform. Thus, one should quantitatively characterize
service latency expectations and carefully measure actual system performance to assure
that service latency and service reliability are acceptable when the system operates at
engineered load for a particular confi guration.

 Table 12.1 gives an example of service latency and reliability requirements for a
sample application. Two service latency requirement points are specifi ed for each
transaction type (maximum 50th and 95th percentile latencies) which defi ne a service
latency envelope, as well as a maximum acceptable service latency and an overall
service reliability requirement, expressed in defects per million (DPM) transac-
tions when system confi guration is running at or below engineered load. While the
maximum acceptable service latency and maximum number of DPM operations (service
reliability) requirements are likely to be the same for both traditional and virtualized

 TABLE 12.1. Sample Service Latency and Reliability Requirements at MP 2

 Transaction
Type

 Maximum 50th
Percentile
Latency

(Milliseconds)

 Maximum 95th
Percentile Latency

(Milliseconds)

 Maximum
Acceptable

Service Latency
(Milliseconds)

 Maximum Number
of Defects per

Million Operations
(DPM)

 Logon 500 1,000 10,000 10
 Query 150 300 3,000 5
 Update 250 500 5,000 10
 Logoff 200 400 4,000 5

RELIABILITY REQUIREMENTS 251

deployments, the maximum 50th and 95th percentile service latency requirements may
be less aggressive (i.e., longer) for virtualized deployment than for traditional systems
to permit the system to be deployed in server consolidation, multitenant, or cloud
computing confi gurations without violating the service reliability requirements.

 Formal service reliability and service latency requirements at MP 2 can include:

 1. The maximum acceptable service latency for virtualized application deployment
shall be the same as for traditional system deployment (and is shown in Table
 12.1).

 2. The virtualized application shall continuously meet all service reliability and
service latency requirements (of Table 12.1) when offered load is less than or
equal to the engineered capacity of the system under test.

 Engineered capacity of traditional systems was usually fairly straightforward to specify
as it was either:

 • explicitly specifi ed based on well - known hardware confi gurations , for example,
server confi guration “ A ” with “ B ” CPU cores, and “ C ” Gb of RAM can support
 “ D ” simultaneous users); or

 • based on an observed characteristic , for example, maximum engineered capacity
is reached when CPU occupancy reaches X %, or when memory usage reaches Y %.

 As virtualization weakens the application ’ s linkage to the physical hardware, it is
important to explicitly specify the observed behaviors that signify that engineered
capacity has been reached for the particular application confi guration. Many critical
applications will include multiple VM instances — each of which may have different
operational characteristics, including indications that engineered capacity has been
reached for each instance — so it may be diffi cult to offer a single one - size - fi ts - all
requirement specifying engineering capacity of virtualized application confi gurations.
Thus, the authors offer the following higher level requirements:

 3. The performance indicator(s) that indicate that a virtualized application
instance has reached engineered capacity shall be specifi ed . These indicators
will typically include CPU usage, depth of work queue, and so on. Note that
different VM packages (e.g., VMware) provide additional metrics that may be
useful to assess resource usage.

 4. Service reliability and latency testing will be executed on a virtualized applica-
tion instance running near or at engineered capacity.

 12.3.3 Overload Requirements

 By decoupling application and platform software from the underlying hardware
resources, virtualization complicates hardware dimensioning and capacity planning
because engineered capacity is determined by the virtual confi guration rather than

252 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS

explicitly via specifi ed physical hardware. This reinforces the need to complete robust
overload testing to assure that when offered load exceeds the engineered virtual resource
capacity, the application will automatically detect the overload, gracefully control the
overload, and resume normal operation promptly after the overload condition clears.
Assuming that the overall application deployment includes appropriate perimeter secu-
rity elements like fi rewalls, deep packet inspection elements, and so on, DoS/DDoS
attacks should be largely controlled by that network infrastructure; however, it may
also be appropriate to rate limit the bandwidth of either virtual network adapters
or networking infrastructure to further control potential DoS/DDoS attacks on the
application.

 The following overload requirements are generally appropriate:

 1. The [traditional system | virtualized application] shall have a mechanism for
detecting and automatically mitigating overload conditions . This mechanism
shall be based on characteristics such as resource availability (e.g., CPU,
memory, and buffers), message priority (e.g., continuing to service emergency
calls), disk read and write latency, and transaction “ stickiness ” (i.e., directing
all messages or actions associated with a particular transaction to the same
component for processing). Note that the guest OS ’ s view of resource usage
may be different from that of the host OS so care should be taken to ensure the
correct metrics are used.

 2. The [traditional system | virtualized application] shall endure at least two con-
tinuous hours of < 4 > times the nominal engineering capacity of the confi gured
system without critical failure . Note that many, and perhaps all, user requests
will fail during this period, and service reliability requirements do not apply
during overload situations.

 3. The [traditional system | virtualized application] shall revert to normal opera-
tion and meet service reliability and service latency requirements within < 5 >
minutes of overload situation clearing.

 4. The [traditional system | virtualized application] shall raise an alarm when
overload controls are activated and clear the alarm when overload controls are
deactivated.

 As discussed in the server consolidation usage scenario (Section 12.2.2), hypervisors
may occasionally offer VM instances a burst of additional resources when needed, and
thus overload controls may not need to activate if the platform delivers a suffi cient and
timely burst of additional resources to meet the offered load. Likewise, the virtualized
platform may be unable to deliver the nominally allocated or requested resource capac-
ity (e.g., because of oversubscription), and thus overload controls may be required to
activate at less than nominal workload levels. The risk that the hypervisor may deliver
less capacity than requested leads to the following requirement:

 5. Overload controls will activate and deactivate to assure minimum user service
impact when the hypervisor provides fewer resources (e.g., CPU or network
bandwidth) than were requested or reserved and cannot meet the offered load.

RELIABILITY REQUIREMENTS 253

 12.3.4 Online Capacity Growth and Degrowth

 The rapid elasticity that is an essential characteristic of cloud computing is underpinned
by the fundamental ability of an application to grow and shrink capacity while the
application remains online and serving users. This fundamental online application
growth and degrowth feature transforms into rapid elasticity when service orchestration
mechanisms coordinate and automate execution of the online application growth and
degrowth mechanisms to enable rapid — and perhaps even automated — capacity growth
and degrowth to closely track offered load.

 As discussed in Section 7.4 , “ Cloud and Capacity, ” there are three fundamental
application growth strategies: horizontal growth, vertical growth, and out growth. While
not all applications will support all three growth strategies, applications should support
vertical or horizontal growth (or both) to permit a single application instance to grow,
as well as outgrowth in which additional application instances are created (possibly
even on multiple infrastructure as a service (IaaS) providers ’ platforms simultaneously
in a cloud bursting scenario).

 Applications should consider the following requirements:

 1. It shall be possible to increase application capacity without impacting service
to existing application users.

 2. Mechanisms shall be provided to gracefully release excess resources without
causing unacceptable user service impact . Note that this is often implemented
by migrating user sessions or workload away from lightly loaded process or
VM instances so that (then unused) processes or VM instances can be termi-
nated and their resources released.

 The following requirements enable application providers and IaaS providers to compare
and agree upon capacity growth expectations.

 3. The IaaS provider must indicate the speed at which additional capacity could
be brought online.

 4. Application providers must specify the speed at which additional capacity is
required.

 12.3.5 (Virtualization) Live Migration Requirements

 Proper support of live migration affords the cloud service provider signifi cant opera-
tional fl exibility for application management. For example, live migration enables
sophisticated cloud service providers to migrate running applications (i.e., their memory
and execution state and disk storage access), onto a subset of servers during off peak
periods and power down the unneeded servers to save electricity and cooling expense.
As load increases approaching the next busy period, more servers can be powered on
and the workload can be rebalanced over the expanded server pool via live migration.
Thus, cost - and/or energy - conscious cloud providers might live migrate many applica-
tion instances twice a day or more.

254 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS

 Live migration inherently entails a brief window of service disruption when the
VM is paused and not executing as the VM instance memory is transmitted from one
host to another and has to resynch its state information with the new copy. This period
of disruption should be shorter than the maximum acceptable service disruption time
so live migration should not cause transactions pending during the live migration event
to be delayed so much as to make the responses unacceptably late and thus impact
service reliability metrics. Note that since slow live migration might be mistaken by
an application ’ s high availability mechanism as a critical application failure, it may be
appropriate to implement some interlock between live migration and an application ’ s
high availability mechanism to prevent spurious application failovers. If this is neces-
sary, then additional requirements will be applicable to the application ’ s high avail-
ability infrastructure.

 Virtualized applications should support the following requirements:

 1. In no cases will live migration cause application ’ s high availability mechanism
to delay successful heartbeat/keepalive or other responses/protocol exchanges
by more than <X> milliseconds.

 2. In no cases will live migration cause the maximum acceptable service latency
(from Table 12.1) or maximum DPM rate (also from Table 12.1) to be exceeded.

 3. During the live migration event, the 50th and 95th percentile of service latency
will be no more than <X> milliseconds more than the normal service latency
requirement (from Table 12.1).

 4. Live migration shall cause no nonvolatile data — including performance counts,
provisioning data, or usage/billing information — to be lost.

 Multitenant applications have the following requirement:

 5. No live migration executed on one application instance shall have any user
service impact on any other (multitenant) application instances that might be
running.

 Compliance with these requirements must be robustly tested and validated as they are
key indicators of the availability and reliability of the application.

 12.3.6 System Transition Activity Requirements

 Enterprises will expect any user service disruption due to service transition activities
like software upgrade, update, or retrofi t to be no greater than for traditional application
deployment. Enterprises may even expect virtualized applications to have less service
impact for service transition activities because live migration or geographic distribution
(or georedundancy) of application instances can be used to minimize service disruption
of service transition activities. Any increase in the expectation should be clearly cap-
tured in requirements to assure that architects and developers are aligned, and so testers
can methodically verify achievement of higher expectations.

RELIABILITY REQUIREMENTS 255

 1. Software upgrade, update, retrofi t, and patching of [traditional system | virtual-
ized application] shall have less than < X > seconds of impact on existing users
with no loss of state or context, and no more than < Y > seconds of impact on
new user sessions.

 A similar requirement should be captured to include service transition activi-
ties involving the infrastructure (e.g., hardware, fi rmware, operating system, and
hypervisor):

 2. Upgrade, update, retrofi t, and patching of [traditional system | virtualized
system, including hardware, fi rmware, operating system, and hypervisor] shall
have less than < X > seconds of impact on existing users with no loss of state or
context, and no more than < Y > seconds of impact on new user sessions.

 Multitenant applications have the following requirement:

 3. No service transition activity executed on one tenant ’ s application instance shall
have any user service impact on any other tenants ’ application instances that
might be running.

 Inevitably, the IaaS provider will occasionally execute planned or preventive mainte-
nance on the underlying physical hardware, and the IaaS provider should take steps to
minimize any application service impact due to the provider ’ s actions. While applica-
tion support of live VM migration is the fi rst step in minimizing the impact of IaaS
service transition downtime, individual IaaS providers may offer additional require-
ments to minimize the risk of service quality, reliability, or availability impact due to
IaaS provider operations.

 12.3.7 Georedundancy and Service Continuity Requirements

 [Bauer11] offers a complete set of system georedundancy requirements to consider, so
this section reviews only the highest level requirements which should be relevant for
both traditional as well as virtualized applications.

 1. [Traditional system | virtualized application] shall support georedundant
deployment.

 2. The recovery time objective (RTO) for restoring user service to a redundant
system confi guration shall be no more than < X > hours/minutes.

 3. The RTO for restoring administrative, maintenance, and provisioning service
to a redundant system confi guration shall be no more than < Y > hours/minutes.

 4. The recovery point objective (RPO) shall be no more than < Z > hours/minutes/
seconds.

256 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS

 12.4 QUALITATIVE RELIABILITY ANALYSIS

 Having completed the high availability architecture for the virtualized system, one next
completes qualitative reliability analysis to assure that it is feasible and likely that
qualitative reliability requirements will be met. If the native high availability mecha-
nism still meets the reliability requirements for the virtualized application, then that
mechanism should continue to be used particularly when fi rst virtualizing an application
that existed on a traditional architecture. Guidelines for mapping application instances
onto servers to support high availability are discussed in Section 11.1.1 , “ Mapping
Software into Virtual Machines. ”

 As the architecture becomes more virtualization aware, it may become benefi cial
to leverage at least some of the high availability mechanisms offered by the virtualiza-
tion platform, such as automatically restarting failed VM instances; however, the risk
due to the added complexity and possible race conditions between the two high avail-
ability mechanisms must be well analyzed and tested before that is considered. In
addition, the use of the high availability mechanisms associated with a particular vir-
tualization platform may also lock the application into that particular virtualization
platform, thereby reducing deployment fl exibility. Several general architectural ques-
tions to consider are:

 • Does the native high availability mechanism still meet the reliability require-
ments for the virtualized application?

 • Would the virtualization platform ’ s high availability mechanism meet the reli-
ability requirements for the virtualized application?

 • Would the use of a particular virtualization high availability mechanism constrain
the application to that particular hypervisor or virtualization platform?

 • What is the impact of simultaneous use of both native and virtualized high avail-
ability mechanism? Is there a risk of race conditions?

 In addition, the following reliability analyses should be completed:

 • Verify virtualized hardware is not a single point of failure — Section 12.4.1

 • Verify that results of FMEA of virtualized system are comparable to native
system results — Section 12.4.2

 • Verify that live migration should have a negligible service impact — Section
 11.3.3

 • Verify that elastic growth and degrowth should have negligible service impact —
 Section 12.4.3

 • If applicable, verify that confi guration and management of individual tenant
application instances has no impact on other tenant instances — Section 12.4.3.1

 12.4.1 SPOF Analysis for Virtualized Applications

 Unlike traditional systems, virtualized applications are explicitly decoupled from
the underlying hardware, so hardware platform components are often not explicitly

QUALITATIVE RELIABILITY ANALYSIS 257

shown in architectural diagrams. Nevertheless, application suppliers should recommend
at least one high availability confi guration for critical applications that maps application
and platform software components onto virtualized machines confi gured on different
hardware platforms to assure that no single point of failure exists. This means assuring
that redundant VM instances are not hosted by a single element (e.g., all active and
redundant VMs running on a single server) so that no single hardware or infrastructure
failure will impact both primary and redundant VM instances of application compo-
nents. Clear confi guration information should be provided to architects and operations
engineers on the engineering rules to assure that the application is deployed in a suit-
ably high availability confi guration so that no single (noncatastrophic) hardware, soft-
ware, or other failure produces an unacceptable service impact. Server anti affi nity
policy should be set to assure that specifi c VMs must not be active on the same server.

 Figure 12.2 illustrates a fault tolerant architecture that has mapped the various
redundant component instances of a sample application (A 1 and A 2 ; B 1 , B 2 , B 3 , and B 4 ;
C 1 and C 2) across four physical servers hosting VMs (virtual servers 1, 2, 3, and 4).
Figure 12.3 shows how a failure that impacts server 1 — and hence A 1 , B 1 , and C 1 —
 leaves redundant VM instances — A 2 , B 2 , B 3 , B 4 , and C 2 — available to serve users, and
thus server 1 (or servers 2, 3 and 4) is not a single point of failure. Readers can imagine
how individual failures of virtualized servers 2, 3, or 4 would not be single points of
failure either. Note that in the case of load - shared N + K redundancy there does not
have to be a one - to - one mapping of VM to server as indicated in Figure 12.2 ; however,

 Figure 12.2. Mapping Virtual Machines across Hypervisors.

IP Networking Infrastructure

Virtualized
Server 1

Virtualized
Server 2

Virtualized
Server 3

Virtualized
Server 4

A1 B1 C1 A2 B2 C2 B3 B4

 Figure 12.3. A Virtualized Server Failure Scenario.

IP Networking Infrastructure

Virtualized
Server 2

Virtualized
Server 3

Virtualized
Server 4

A2 B2 C2 B3 B4SERVER
FAILURE

258 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS

there does have to be a distribution of VMs that supports the availability of redundant
VM instances in the event of a total server failure.

 12.4.2 Failure Mode Effects Analysis for Virtualized Applications

 Failure mode effects analysis (FMEA ; described in Section 5.1.3) for traditional appli-
cations generally analyzes down to the level of recoverable software and hardware
modules. Virtualization adds two additional levels of complexity to consider:

 • Failure and recovery of every VM instance should be considered separately.

 • Failure analysis of traditional hardware modules (e.g., compute blades, rack
mounted servers, hard disk drives, and network adapters) must be replaced with
analysis of virtualized platform components (e.g., virtual CPU, virtual NIC)
including the hypervisor.

 Depending on the application ’ s virtualization architecture, a single virtualized server
failure may impact a greater portion of application functionality than a hardware failure
of a traditional application confi guration, and thus one must assure that the failure
scenario will not produce user impact of longer than the application ’ s maximum accept-
able service disruption time.

 12.4.3 Capacity Growth and Degrowth Analysis

 Application growth and degrowth are facilitated by rapid elasticity mechanisms. In
traditional systems, it is often important that application and resource growth are non-
service impacting; growth and degrowth are treated as manual service transition activi-
ties. The virtualization and cloud mechanisms support traditional nonservice impacting
growth and degrowth as well, but what differentiates cloud rapid elasticity mechanisms
from traditional ones is that the mechanisms are automatic and usually do not require
the physical installation or removal of hardware. They can also mitigate some overload
situations by carefully monitoring traffi c loads and growing available capacity before
the offered load reaches the engineered capacity of the allocated resources. Section 7.4 ,
 “ Cloud and Capacity, ” provides background on how the cloud mechanisms impact
capacity. Section 11.1.5 , “ Rapid Elasticity, ” discusses how to maximize effective usage
of the mechanisms to ensure reliable growth and degrowth. Similar to the live migration
process above, growth and degrowth scenarios must be analyzed and verifi ed through
testing to ensure that they can meet the requirements defi ned in Section 12.3.4 , “ Online
Capacity Growth and Degrowth. ” Scenarios to consider include:

 • Growth of Application Capacity . This should be verifi ed through a manual
request for an additional instance of the application, as well as through an auto-
matic trigger (as indicated through service orchestration — see Section 8.3.1 ,
 “ Role of Rapid Elasticity in Cloud Management ”).

 • Degrowth of Application Capacity . This should be verifi ed through a manual
request for removal of an instance of the application as well as through an

QUANTITATIVE RELIABILITY BUDGETING AND MODELING 259

automatic trigger (as indicated through service orchestration — see Section 8.3.1 ,
 “ Role of Rapid Elasticity in Cloud Management ”).

 • Growth of Persistent (Nonvolatile) Storage . This should be verifi ed through a
manual request for more storage, as well as through an automatic trigger (as
indicated through service orchestration — see Section 8.3.1 , “ Role of Rapid Elas-
ticity in Cloud Management ”).

 • Degrowth of Persistent (Nonvolatile) Storage . This should be verifi ed through
a manual request for removal of storage as well as through an automatic trigger
(as indicated through service orchestration — see Section 8.3.1 , “ Role of Rapid
Elasticity in Cloud Management ”).

 • Overload Conditions . Applications must be designed and validated for overload
control management. This can be tested by applying varying loads on a system
to simulate overload conditions followed by low traffi c conditions to ensure that
rapid elasticity can provide the needed growth and degrowth and mitigate the
impact of overload (as defi ned in the requirements in Section 12.3.3 , “ Overload
Requirements ”).

 The same scenarios should be run in a multitenant confi guration to ensure that none of
the growth or degrowth activities negatively impacts another tenant ’ s service.

 12.4.3.1 Multitenancy Considerations. If the application supports multitenancy,
then the service transition activity analysis should also verify that no service transition
activity impacts active application instances that are not the explicit target of the activ-
ity. In addition to traditional service transition activities, the multitenancy analysis
should also verify that there is no service impact on other tenant instances when each
and every tenant - specifi c confi guration parameter is changed.

 12.5 QUANTITATIVE RELIABILITY BUDGETING AND MODELING

 To assure that quantitative service availability requirements are met, the best practice
is to create a downtime budget that meets the requirements and construct mathematical
availability modeling demonstrating the feasibility of achieving the budget. The fol-
lowing sections will discuss availability analysis. Quantitative service reliability (i.e.,
DPM) and latency budgeting and modeling are beyond the scope of this book.

 12.5.1 Availability (Downtime) Modeling

 As discussed in Section 10.3 , the best practice is to construct architecture - based avail-
ability modeling to analyze the feasibility and likelihood of a system achieving its
quantitative service availability expectations. Fine - grained availability modeling will
typically consider each component, module, or subsystem included in the FMEA analy-
sis that can impact the primary service being modeled; medium - or coarse - grained
modeling will aggregate some of the individual components, modules or subsystems

260 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS

to simplify the mathematics as well as parameter estimation and ultimate model valida-
tion and calibration; coarse - grained modeling considers very simple architectural or
 “ black box ” view of the system.

 While virtualized application suppliers may not supply specifi c hardware to
customers, the application supplier should have one or more reference hardware con-
fi gurations. It is generally appropriate to use the reference high availability hardware
confi guration when modeling system availability. This enables the application supplier
to offer customers a reference system availability prediction, and one can logically
delete the reference hardware from the model by setting all hardware failure rates to 0
(e.g., 0 FITs, which is 0 failures per billion hours). One can then construct a math-
ematical model of their specifi c virtualized platform, estimate the service availability
of that platform, and then sum that downtime with the hardware - free (i.e., hardware
failure rates equal 0 failures per hour) system availability prediction to estimate overall
unplanned software downtime for the deployed virtualized application.

 12.5.2 Converging Downtime Budgets and Targets

 Inevitably, several iterations are necessary to refi ne downtime modeling input param-
eters to reach feasible inputs that result in acceptable predicted values. Refi nement to
the budget — and even system architecture — might be necessary for reasonable model-
ing input parameters to make achieving the overall service availability requirement
feasible and likely. Having reached a set of input parameters that achieve the require-
ment, the quantitative values should be used as baseline targets for failure rates, failure
coverage factors, switchover/failover latencies, and switchover/failover success prob-
abilities. These targets should be considered by architects and developers to guide their
designs, and should be verifi ed by unit and system testing.

 12.5.3 Managing Maintenance Budget Allocation

 Downtime budget must also account for downtime incurred while performing main-
tenance activities. As has been discussed in Section 11.3 , “ IT Service Management
Considerations, ” it may be feasible for these activities to be performed reliably with
no service downtime. Architects and developers should take maximum advantage of
live migration, elasticity, and service orchestration mechanisms and incorporate them
in their system architecture and designs to ensure that successful execution of the
maintenance activities does not accrue any service downtime. Robust unit and system
testing must be performed to validate that user service is not affected by maintenance
activities. If successful execution of the maintenance activities accrues no service
downtime and the activities are well tested and validated, then budget allocated in this
category can be minimal (e.g., 1 minute or less) to account for a rare product - attributable
failure in the mechanisms or procedures.

 12.6 ROBUSTNESS TESTING

 Robustness testing confronts a system with plausible failure scenarios to verify that
the failure is properly contained, automatically detected, and rapidly recovered without

ROBUSTNESS TESTING 261

causing unacceptable service impact to system users. Robustness tests of critical sys-
tems with high availability expectations should be completed to assure that inevi-
table failures will be successfully and automatically mitigated by the deployed system.
Robustness testing is considered in the context of each of the 8 product - attributable
failure vectors reviewed in Section 4.4 , “ Risks of Service Models ” (and [Bauer10]).

 Virtualization technology should reliably emulate application operation on
traditional/native hardware confi gurations, and thus most or all basic robustness testing
executed on traditional/native hardware confi gurations is expected to work properly on
virtualized confi gurations. For applications that are offered on both native and virtual-
ized confi gurations, some robustness testing can be performed on one of those confi gu-
rations on the assumption that behavior will be identical on the other confi guration;
other scenarios are suffi ciently different that at least some robustness test cases should
be executed on both confi gurations. Note that in many cases, applications are built on
previously tested platform software, so the bulk of robustness testing may have been
covered during platform software testing. Nevertheless, some robustness testing is
appropriate to verify that application software is properly integrated with high avail-
ability mechanisms in platform software and that the application and platform ’ s high
availability mechanisms are properly integrated with the hypervisor.

 12.6.1 Baseline Robustness Testing

 Mapping a traditional application onto a virtualized platform means that integration of
automatic failure detection and recovery must be reverifi ed, at least to the VM instance
and virtualized server level. In addition to verifying proper failure containment and
reliable recovery, all failure detection and latencies and switchover/failover time mea-
surements should be repeated so validated latency inputs can be used as inputs to service
availability modeling. Some spot checking of programming error, data error, redun-
dancy, application protocol, and network error robustness testing should be repeated
against the virtualized application to assure high - quality integration/adaptation of the
application ’ s high availability infrastructure with the virtualized environment.

 Server consolidation, multitenant, and cloud computing usage scenarios add the
additional risk that failure or abnormal behavior of a coresident application may impact
the target application. Since consolidated applications inherently share the same physi-
cal processing, networking, and other physical resources, a heavy workload on a con-
solidated application might affect resources available to the target application. While
the virtualization platform should prevent a heavy workload by a consolidated applica-
tion from impacting actual resource availability (i.e., resource allocation requests
should not explicitly fail), a heavy workload may increase resource access latency for
other applications. For example, if a consolidated application is enduring a heavy
workload or otherwise under stress (e.g., a security attack), then the target application
may not enjoy the same favorable CPU scheduling as when consolidated applications
are lightly loaded, and less favorable CPU scheduling may translate directly into some-
what increased transactional latency. These risks are sometimes euphemistically referred
to as “ noisy neighbor ” problems because just as a noisy neighbor in an apartment build-
ing can impact your ability to sleep, a busy or errant application on a shared IaaS
platform can impact the target application. We will lump all server consolidation

262 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS

related robustness scenarios into a new robustness vector called “ Neighbor ” detailed
in Section 12.6.1.1 . In addition, virtualization introduces several new failure scenarios,
including:

 • Failures of virtualized hardware, discussed in Section 12.6.1.2 .

 • Failures related to virtualized redundancy, discussed in Section 12.6.1.3 .

 • Failures related to virtualized activities, discussed in Section 12.6.1.4 .

 12.6.1.1 Neighbor Failures. Consolidated applications — “ neighbors ” on a shared
virtualized platform — share access to essentially the same virtualized resources as the
target application. For example, if the workload on neighboring applications increases,
then resource - sharing algorithms (e.g., CPU scheduling) implemented by the hypervi-
sor may either make less CPU resources available to the target application or may
increase the latency between time windows when the target application is executed on
a physical CPU or otherwise alter the resource access that the target application enjoyed
when the neighbors were making light resource demands on the shared virtualized
platform. Likewise, if the failure or errant behavior of a neighboring application is not
fully contained by the hypervisor, then that failure or errant behavior might cascade to
other VM instances, including the target application. Neighbor failures to consider in
robustness test planning include:

 • CPU Exhaustion by Neighboring Application(s) . What happens to the target
application when one or more coresident VM instances go to 100% CPU utiliza-
tion, due to software defects (e.g., infi nite loops and ineffective overload control),
spikes in legitimate traffi c, security attack, and so on?

 • Delay in Real - Time Notifi cation . activation of clock or timer handlers is delayed
to simulate target application ’ s handler being queued behind one or more other
application ’ s interrupt handlers. Thus, the target application ’ s handler might
fi nally execute signifi cantly later than was nominally requested.

 • Network “ Receive ” Saturation by Neighboring Application(s) . What happens
when a coresident VM instance is experiencing a traffi c fl ood or DDoS attack?
Is the target application ’ s IP traffi c impacted?

 • Network “ Send ” Saturation by Neighboring Application(s) . what happens when
a coresident VM sends massive volumes of network traffi c for a window of time
(e.g., replicates a massive data set to another application instance)?

 • Disk Read Saturation by Neighboring Application(s) . What happens when a
coresident VM(s) needs to read massive data sets from disk?

 • Disk Write Saturation by Neighboring Application(s) . What happens when
coresident VM(s) attempt to write massive data sets to disk?

 • Memory Exhaustion by Neighboring Application(s) . What happens when coresi-
dent VM instances simultaneously reach their heap memory allocation?

 • Attack by a Neighbor Inducing Any or All of the Above as Well as an Internal
Network Saturation . What happens when one neighbor maliciously attacks
another?

ROBUSTNESS TESTING 263

 Applications that support multiple independent instances executing simultaneously on
the same virtualized platform should verify that both unplanned failures and successful
and unsuccessful service transition activities do not adversely impact service offered
by other applications instances.

 12.6.1.2 Failures of Virtualized Hardware. By decoupling application and plat-
form software from the underlying hardware resources, virtualization introduces a risk
that hardware failure and status information (e.g., resource load/overload) may not fl ow
properly in virtualized confi guration compared with native deployments. As discussed
in Chapter 6 , “ Hardware Reliability, Virtualization and Service Availability, ” virtualiza-
tion merely decouples applications from fallible hardware rather than completely elimi-
nating the risk of hardware failure. Thus, robustness testing of applications is necessary
to assure that the virtualized platform, application platform, and application software
will seamlessly interact to assure that inevitable hardware failures are detected, con-
tained, and service is recovered in less than the MaximumAcceptableServiceDisruption
time. Assuring effective containment and rapid automatic detection and recovery from
hardware failures is primarily the responsibility of the virtualized platform supplier or
IaaS provider.

 It is obviously infeasible to verify proper detection and recovery from all pos-
sible failures of all potential hardware platform confi gurations. Thus, one should
verify proper rapid and automatic failure detection and recovery from the types of
hardware failures that are most likely to occur. The types of hardware failures to con-
sider include:

 • Processor Failure . Complex and highly integrated devices like microprocessors,
digital signal processors, network processors, fi eld programmable gate arrays,
and so on are critical to fi eld replaceable unit (FRU) functionality and are often
more susceptible to wear out due to environmental - related effects.

 • Disk Failure . Hard disk drives are built around high performance spinning plat-
ters and moving magnetic heads. Over time, moving parts (e.g., lubricated bear-
ings) will wear and eventually fail. Note that IaaS infrastructure, especially
redundant array of inexpensive (or independent) disks confi gurations, may be
designed to automatically mitigate the risk of most disk failures.

 • Power Converter Failure . Board - mounted power modules are used to convert
voltages provided on the system ’ s backplane to the voltages required by devices
on the board itself.

 • Clock Failure . Oscillators drive the clocks that are the heartbeat of digital
systems.

 • Clock Jitter . In addition to hard (persistent) clock failures, the clock signal pro-
duced by an oscillator can jitter or drift. Clocks can drift as they age for a variety
of reasons including mechanical changes to crystal connections or movement of
debris onto crystal. This jitter or drift can cause circuitry served by one oscillator
to lose synchronization with circuitry served by another oscillator, thus causing
timing or communications problems between circuits.

264 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS

 • Switching/Ethernet Failure . These devices enable IP traffi c to enter and leave
the FRU, and thus are critical.

 • Memory Device Failure . Memory devices are typically built with the smallest
supported manufacturing line geometries to achieve the highest storage
densities.

 • Parallel or Serial Bus Failure . High - speed parallel and serial busses are very
sensitive to electrical factors like capacitance and vulnerable to crosstalk. Many
connector failures can be covered via this error category.

 • Transient Failure or Signal Integrity Issue . Weak electrical design or circuit
layout can lead to stray transient signals, crosstalk, and other impairments of
electrical signals.

 • Application - Specifi c Component Failure . Application - specifi c components like
optical or radio frequency devices may be more failure prone because of small
device geometries, high power densities, and newness of technology or manu-
facturing process. Components like fans, aluminum electrolytic capacitors, and
batteries are also subject to wear out.

 Hardware fault insertion (HFI) testing is the best practice for verifying automatic
recovery from hardware failures. Virtualization enables one to execute the HFI tests
on whatever hardware platform supports HFI, regardless of whether the deployment/
production hardware supports HFI testing because virtualization in general and the
hypervisor in particular should assure that classes of hardware failures should be pre-
sented to applications via VMs in similar ways. Note that different virtualized hardware
drivers may cause some hardware failures to be presented to the VM instances hosting
applications differently.

 12.6.1.3 Virtualization and Redundancy Failures. Virtualization creates the
risk that unneeded VM instances will be spuriously spawned or incorrectly remain
active or paused, thereby causing application software — especially high availability
software — to malfunction. In addition, live migration, online capacity growth, and
online capacity degrowth are complex operations that can fail. Specifi c failure scenarios
to consider:

 • Spurious/unexpected application VM instance (e.g., a snapshot) is activated.

 • Application VM instance spawns very slowly.

 • Stale (paused) application VM instance activated.

 • Live migration fails to successfully restart a VM instance.

 • Live migration slowly restarts a VM instance (e.g., <X> seconds of paused or
 “ lost ” time).

 • Request to allocate and activate a new VM instance fails.

 • Request to allocate more persistent (nonvolatile) storage fails.

 • Request to destroy a VM instance fails to complete successfully.

ROBUSTNESS TESTING 265

 12.6.1.4 Network Errors. Presumably, errors in virtualized network interfaces
would be rendered to VM instances either as “ normal ” NIC errors, or the network
packet/data would simply never be presented to the VM instance. Since IP networking
expects IP packets to occasionally be lost, protocol and application mechanisms miti-
gate occasional lost packets. Thus, failures of virtualized network adapters should not
be materially different from failures presented by traditional NICs on native hardware
confi gurations, yet it may be appropriate to repeat some testing to verify proper opera-
tion of network error mitigation mechanisms.

 12.6.1.5 Summary. Figure 12.4 gives an Ishikawa, or “ fi shbone, ” diagram for
high - level robustness test cases for virtualized applications that augments “ Figure
 4.8 — Software Supplier (and SaaS) Responsibilities for Traditional Error Vectors, ” with
the robustness test cases discussed earlier in this section.

 12.6.2 Advanced Topic: Can Virtualization Enable Better
Robustness Testing?

 Beyond the obvious benefi t of potentially shortening execution time of robustness test
cases by restarting snapshot VM images rather than requiring testers to wait while
slower traditional application startup completes, virtualization technology can offer
opportunities for better, cheaper or more effective execution of some robustness test
cases. As an analogy, consider that the boundary scan technology (IEEE 1149.1, some-
times referred to as JTAG for the Joint Test Action Group that developed the standard),

 Figure 12.4. Robustness Testing Vectors for Virtualized Applications.

Failure

Memory leaks and
problems
Resource conflict
Tight or infinite loop
Remote execution

problems
Memory corruption
Bad pointers
Logic errors
Resource leaks
Process hang/abort
Thread hang/abort

File system corruption
Disk full
Log file full
Checksum error
Inconsistent data copies
Database corruption
Shared memory corruption
Linked list breakage
File not found, corrupted or

not accessible
Record not found or

corrupted

Failure of supporting system
Dropped IP packets

Unexpected message
contents or structure
Unexpected message

sequence
Overload, including DDoS
Protocol version mismatch

Failure to properly plan
or prepare
Failure to promptly

detect a problem
Failure to properly

diagnose problem
Failure to correctly

execute a procedure

ProceduresApplication
ProtocolNetwork

Slow or failed VM
creation or activation
Slow or failed VM live

migration

RedundancyProgramming
Error Data Error

Processor failure
Disk failure
Power converter failure
Clock failure or jitter
Ethernet failure
Memory failure
Bus failure
Transient or signal

integrity problem
Application-specific

component failure

Virtualized
Hardware

Neighbor

CPU exhaustion
Disk saturation
Network saturation
Realtime notification

delay

266 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS

which is primarily used for manufacturing and assembly testing of electronic compo-
nents and assemblies can also be used to simulate hardware failures. 1 Robustness test
cases that are better, cheaper, or faster to execute on virtualized confi gurations than
on native confi gurations can potentially save application development teams ’ time and
money by executing those robustness test cases on a virtualized confi guration instead
of the native confi guration when appropriate. Below is a list of ways that virtualization
might be leveraged to enable better, cheaper, or faster robustness test case execution.

 • Suspending application VM instances is an effective way to simulate profound
unavailability of a target network element because it makes the entire element
completely nonresponsive (e.g., even PINGs to the VM fail).

 • Virtual network interface cards could theoretically simulate a variety of network
impairments, such as dropped and corrupted IP packets, packets delivered out of
sequence, and packet jitter.

 • Virtualization can be used to create dummy or simulated systems (often on less
powerful hardware, such as older servers or even laptops) which can be used for
training and perhaps even to practice operations, administration, maintenance,
and provisioning (OAM & P) procedures before executing procedures on live
systems. Training via realistic simulation is a best practice for minimizing the
risk of human error during “ live ” execution of operational and maintenance
procedures. Appropriate virtualized environments with suitable training materials
and scenarios can reduce the risk of human/procedural errors and associated
service downtime.

 One could even construct a virtualized platform that has fault insertion enabled so that
one could easily simulate hardware, networking, and perhaps other failure scenarios to
verify robustness of virtualized applications. Presumably, such a fault insertion enabled
virtualized platform could be used for robustness testing of literally any application
that can be hosted on the platform.

 Cycle time for robustness test case execution might also be reduced by restoring
system snapshots taken before executing failure scenarios because restoring a system
snapshot should be faster and potentially more automated than completing traditional
system restoration activities between of each robustness test iteration. Reducing cycle
time means that either more robustness test cases can be completed in the same interval
(producing a more robust product for the same testing investment), or a fi xed number

 1 JTAG enables “ tests ” to be externally applied to hardware under test via a fi ve - wire JTAG connection, such
as driving a boundary scan - enabled component into “ HIGHZ ” (high electrical impedance) state, which
electrically isolates (i.e., disconnects) the component from circuits on a printed wiring board, thus simulating
a profound component failure. A variety of other JTAG commands and mechanisms can be used to simulate
a variety of hardware failures on unmodifi ed hardware and execute completely independently of normal
software and fi rmware executing on the hardware assembly.

STABILITY TESTING 267

of robustness test cases can be completed in a shorter interval (producing similar robust-
ness with smaller testing investment).

 12.7 STABILITY TESTING

 Assuming an appropriate stability testing campaign has been successfully com-
pleted against the traditional application confi guration, stability testing of the vir-
tualized application confi guration can focus on the following virtualization - related
risk areas:

 • Overload . Application deployments on virtualized platforms will undoubtedly
offer somewhat different service capacities and thus applications may experience
a broader range of overload manifestations in virtualized deployment than in
traditional deployment. Note that the overload test phase should include both
light overload periods (e.g., 105% of engineered capacity) in which the hypervi-
sor may boost the resource allocation to cover the increased workload, as well
as true overload (e.g., 150% of engineered load) to assure that overload controls
properly activate and later deactivate.

 • Live Migration . Live migration enables data center operations staff to move
active VM instances from host to host to optimize data center operations. If live
migration will be used with the virtualized application in fi eld deployment, then
stability testing should verify that live migration has no impact on system stabil-
ity even when occurring during failure situations.

 • Variations in Resource Availability . In server consolidation, multitenancy, cloud,
and virtual appliance deployment scenarios, the virtualized platform resources
might be oversubscribed so the resources actually available to an application
instance could range from being greater than the nominal resource reservation
to somewhat less than the reservation. Stability testing should verify stability
even when actual resource allocation differs from the nominal reservation.

 • Growth/Degrowth . The virtualization platform and the hypervisor in particular
manage the allocation and deallocation of resources for new and removed VM
instances. Stability testing should verify that growth/degrowth of VM instances
has no impact on system stability.

 Ideally, a stability testing campaign includes a long - duration endurance test (e.g., 72
hours) which demonstrates complete system stability over an extended period. This
endurance test should include a diverse and realistic mix of user operations as well as
operational, administrative, maintenance and provisioning tasks. The load on the system
under test should vary and include long periods with a system under heavy sustained
load. One stability testing strategy is for the test campaign to simulate heavy daily
traffi c patterns with very heavy user traffi c loads during a (possibly extended) busy
period and a heavy provisioning load running during a maintenance period and/or

268 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS

during the period of busy user service, depending upon expected traffi c patterns of the
deployed application.

 When possible, stability testing should mirror heavy usage patterns likely to be
experienced in production operation. Thus, a stability test run might begin with a heavy
(e.g., 80% of engineered capacity) mixed and sustained load of user traffi c; a modest
OAM & P workload, like adding new users and provisioning existing users, should be
running also, as would be expected in production. After a continuous period of at least
as long as the longest daily busy period the application is expected to experience in
production, a simulated maintenance period can begin with maximum administrative
load, such as bulk provisioning of new and existing users and perhaps database backup,
with a moderate user workload continuing. The maintenance phase should be somewhat
longer than the longest plausible maintenance period in production deployment. After
the maintenance phase completes, a series of live migrations with moderate user and
OAM & P workloads running can be executed. Periods of light and heavy overload can
also be included, as can some simulated failure and recovery scenarios. The stability
test generally ends with a fi nal soak phase with moderate to heavy user and administra-
tive workloads to assure that the system is truly stable after all of the activities and
loads.

 12.8 FIELD PERFORMANCE ANALYSIS

 A key of continuous quality improvement is following the Deming cycle of plan/do/
check/act to use feedback to close the loop and drive improvements. Figure 12.5 maps
the system design for reliability activities against plan, do check, and act phases:

 Figure 12.5. System Design for Reliability as a Deming Cycle.

PLAN

DO

CHECK

ACT

•Set reliability/availability
requirements

•Qualitative analysis and
quantitative
budgeting/modeling verifies
feasibility of achieving
reliability/availability
requirements

•Develop the system

•Validate
reliability/availability
requirements via
appropriate robustness and
stability testing

•Analyze field performance
to check how well
requirements were met in
field deployment, including
root cause analysis of
performance gaps, as well as
validation and calibration of
prediction models based on
actual field performance

•Develop and execute
reliability roadmap to refine
reliability/availability
requirements, correct
residual design or
implementation flaws, and
refine robustness and
stability testing

RELIABILITY ROADMAP 269

 • Plan involves setting reliability requirements and completing qualitative analysis
and quantitative budgeting and modeling to assure it is feasible for the planned
architecture and design to meet the requirements.

 • Do is developing the system and validating achievement of the reliability and
availability requirements via appropriate robustness and stability testing

 • Check is the purpose of fi eld performance analysis.

 • Act is developing and executing a reliability roadmap to refi ne reliability require-
ments, correct residual design or implementation fl aws, and refi ne robustness and
stability testing in subsequent system releases.

 Field performance analysis fundamentally involves two actions:

 1. Gathering and analyzing service reliability and availability measurements
from in - service deployments (discussed in Section 8.2.2 , “ Service Reliability
and Availability Measurements ”).

 2. Root cause analysis of service outages, as well as acute and chronic service
latency and service reliability impairments if possible.

 The resulting data enable:

 • Assessment of whether or not reliability/availability requirements were met in
the analysis period. Failure to meet requirements in production deployment often
prompts aggressive development of a reliability roadmap (discussed in Section
 12.9) and investment to execute the roadmap promptly.

 • Identifi cation of residual defects and vulnerabilities that caused service avail-
ability, reliability, and latency impairments during the analysis period. Correcting
the residual defects and mitigating vulnerabilities inevitably make up a substan-
tial portion of any reliability roadmap.

 • Validation, calibration, and refi nement of predictive models and associated bud-
geting to track better with actual performance. These refi nements should enable
models and budgets of future releases to be more accurate.

 12.9 RELIABILITY ROADMAP

 As explained in Section 12.2 , “ Tailoring DfR for Virtualized Applications, ” existing
applications often enhance their support or leverage virtualization and other features
across several releases. For example, a preexisting application may initially support
virtualization for hardware independence only, and then add support for resource
sharing and multitenancy before fi nally supporting elastic growth and other advanced
virtualization and cloud characteristics. Multirelease roadmaps are often a convenient
way to manage the often diverse set of reliability and availability feature and test
investments that will drive service availability to exceed customer expectations. As
with traditional reliability roadmaps, a roadmap to cloud computing may enable one to
estimate the service availability at each release on the journey.

270 DESIGN FOR RELIABILITY OF VIRTUALIZED APPLICATIONS

 12.10 HARDWARE RELIABILITY

 Responsibility for hardware - attributed downtime, hardware failures, and related main-
tenance actions lies with the virtualized platform provider (e.g., cloud service provider)
and the hardware system supplier(s), rather than the virtualized application supplier.
Thus, hardware reliability diligence should be worked in the context of the virtualized
(e.g., IaaS) platform rather than in the context of the virtualized application.

271

 Amazon Web Services ’ best practices for architecting cloud solutions [Varia] says: “ be
a pessimist when designing architectures in the cloud; assume things will fail. In other
words, always design, implement and deploy for automated recovery from failure. ”
Solution design for reliability (DfR) is a methodical process that addresses the design
for failure intent recommended by [Varia], [Hamilton] , and elsewhere. This chapter
introduces solution DfR, considers each of the solution DfR activities in detail, and
discusses several related topics.

13.1 SOLUTION DESIGN FOR RELIABILITY

 Solution DfR is visualized in Figure 13.1 , and involves the following primary
activities:

 • Defi ne Key Service Reliability and Availability Requirements . Good designs
begin with clear and complete requirements. The best reliability and availability
requirements include quantitative targets for maximum acceptable service dis-
ruption latency, service availability, service reliability, latency, and related behav-
iors for the target solution. The quantitative targets enable mathematical modeling

13

DESIGN FOR RELIABILITY
OF CLOUD SOLUTIONS

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

272 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS

and permit richer architectural and design analysis than the qualitative require-
ments alone. Solution reliability requirements are covered in Section 13.3

 • Perform End - to - End Modeling and Analysis of Key Availability and Reliability
Performance Metrics to Assure Feasibility of Meeting Targets . Designing a solu-
tion is inherently complex because a large and diverse set of functional and
nonfunctional requirements must be met along with strict cost and schedule
constraints. These constraints drive architects to select most or all of the hardware
and software (i.e., systems), environments, networking, power, policies, and
humans to be preexisting or “ off the shelf ” (also known as commercial off - the -
 shelf, or COTS). The modeling and analysis step checks whether it is feasible
that a potential “ paper ” design will meet the reliability and availability require-
ments over the long term. As various arrangements of components are considered
to maximize the design goals and requirements while simultaneously not exceed-
ing cost and schedule targets, modeling and analysis enables these options to be
quickly assessed from a reliability and availability perspective so the project team
can select the overall optimal solution architecture and design. Solution modeling
and analysis is covered in Section 13.4 .

 • Execute DfR Diligence on Included Elements . Ideally, the DfR diligence of
systems considered for inclusion will be assessed and considered before deciding
whether or not to include a particular system in the solution. Just as the cost of
correcting a defect found later in the development and deployment cycle is higher
than if it is found earlier, it is generally cheaper to simply avoid using systems

 Figure 13.1. Solution Design for Reliability.

Solution
Reliability &
Availability

Requirements

Solution
Modeling &

Analysis

Element
Design-for-
Reliability
Diligence

Solution
Testing &
Validation

Tracking &
Analysis of

Field
Performance

Captures
customers�

expectations

Assures
feasibility of

achieving
customers�

expectations

Assures that
included

elements meet
solution�s

needs

Assures
likelihood that
solution meets

customers�
expectations

Monitors actual
performance
and drives
corrective

actions

Cascade
budgets/targets
to included
elements

Root cause, performance, and trend analysis drives:
1. Refinement of solution requirements
2. Validation, calibration, and refinement of solution modeling and analysis
3. Rechecks of element reliability diligence
4. New/improved robustness and stability test cases
5. Input to solution reliability roadmapping

Analysis drives
robustness and
stability test
planning

Cascade
requirements

to included
elements

SOLUTION SCOPE AND EXPECTATIONS 273

with unacceptable fi eld performance or inadequate DfR diligence than it is to
attempt to address issues after the element is selected. Element reliability dili-
gence is discussed in Section 13.5 .

 • Validate Solution to Assure Service Reliability and Availability Targets Are Likely
to Be Met . Testing is necessary to validate that the solution meets both its
functional requirements as well as nonfunctional requirements, like security,
quality, reliability, and availability. Solution testing and validation are covered
in Section 13.6 .

 • Track Field Performance Against Key Service Reliability and Availability Targets,
and Drive Appropriate Corrective Actions if Those Targets Are not Consistently
Met or Exceeded . It is well known that what isn ’ t measured can ’ t be managed
well. Thus, well - run enterprises defi ne key quality indicator s (KQI s) covering
service quality, reliability, and availability, establish quantitative targets for those
metrics, measure those values, and compare to targets. Metrics are reported to
enterprise leaders on a weekly, monthly, quarterly, and/or annual basis, and cor-
rective actions are expected for any KQIs that fail to meet targets. Best practice
is to tie enterprise compensation to achieving these KQIs so the fi nancial interests
of enterprise personnel are better aligned with the interests of end users. Beyond
addressing root causes of specifi c service impairment incidents (e.g., fi xing the
particular defect that triggered a particular outage), it is often appropriate to refi ne
the planned DfR diligence for the next solution release, such as:
� Adding or refi ning requirements related to automatic detection and recovery

for defects that escaped to the fi eld and produced service impairments
� Calibrating, validating, and refi ning mathematical modeling so predictions of

future releases are more accurate.
� Rechecking DfR diligence of included elements associated with service

impairments
� Adding or refi ning robustness and/or stability tests to reduce the risk of similar

defects escaping from solution testing into production deployment.

 Tracking and analysis of solution fi eld performance is covered in Section 13.7 .

13.2 SOLUTION SCOPE AND EXPECTATIONS

 Detailed solution architecture and design begins by bounding the scope of the end to
end service delivery path that is in - scope for the solution architecture and design, and
what equipment, facilities and other components are outside of scope (i.e., not open for
redesign) and thus must be accepted “ as is. ” For example, if service users will access
the application via their choice of browsers on their own personal device via their own
wireless carrier ’ s network, then the likely operational characteristics of that equipment
and those facilities should be accepted as a given. Having defi ned the scope of the
solution, one can frame the high - level KQI expectations for service quality, reliability,
and availability as seen by end users across the end to end solution. Often, one also

274 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS

sets target KQIs for end users that include facilities and equipment beyond what
the cloud supplier is strictly accountable for. While this true end user KQI target is
generally beyond the control of the enterprise, considering the broader perspective, as
well as the narrower accountability perspective enables better solution architecture and
is ultimately likely to produce a better — and perhaps more cost effective — solution
because the performance expectations and assumptions of other elements have been
explicitly considered.

 Consider the sample end to end solution example of Figure 13.2 . A client appli-
cation runs on a mobile device which communicates across a wireless network and
the public internet, to one of the infrastructure as a service (IaaS) service provider ’ s
data centers hosting the target application. Assume end users expect 99.9% service
availability, less than 400 millisecond transactional latency for at least 95% of their
operations, and less than 100 defects per million (DPM) service reliability for their
transactions. A solution architect can then estimate the likely service availability, reli-
ability and latency across the out - of - scope solution elements and facilities, and select
a budget for in - scope solution components that makes it feasible to meet end to end
performance targets over the long term. In this example, we assume the MP 3 targets
for the solution to present 99.99% service availability to the public internet with less
than 100 milliseconds of latency 95% of the time and no more than 20 DPM. While
the cloud consumer has little or no control over the service quality, reliability, or avail-
ability of the public Internet, the end users ’ wireless access network, or the users ’
wireless devices, having considered the overall solution the architect can set balanced

 Figure 13.2. Sample Solution Scope and KQI Expectations.

WAN or
Public

Internet Cloud
data

center

Wireless
Access

Network

Backhaul
Network

Cloud
data

center

End-to-End Solution (MP 4) KQI Targets

99.9% service availability
400 millisecond 95th percentile latency with ≤ 100 DPM

Cloud Solution (MP 3) KQI Targets

99.99% service availability
100 millisecond 95th percentile latency ≤ 20 DPM

Out of Solution Scope In Solution Scope

RELIABILITY REQUIREMENTS 275

expectations for both the in - scope cloud consumer and cloud provider solution ele-
ments, as well as the out - of - scope elements and facilities.

 13.3 RELIABILITY REQUIREMENTS

 This section considers the following categories of solution reliability and availability
requirements:

 • service availability requirements (Section 13.3.1);
 • service reliability requirements (Section 13.3.2);
 • disaster recovery requirements (Section 13.3.3); and
 • elasticity requirements (Section 13.3.4).

 Note that these requirements make extensive use of the MP 3 and MP 2 measurement
points introduced in Section 10.6.1 .

 13.3.1 Solution Availability Requirements

 Solutions typically have several types of users who interact with the solution for dif-
ferent reasons, and often via different protocols, applications, and systems. In addition
to end users, there are often maintenance engineers who operate, back up, and maintain
the solution and included components. There may also be provisioning or data entry
staff that add, modify, and delete application data and/or user account information.
There may be software programs that autonomously interact with the solution, and there
are often business support systems that extract usage data that is used to measure service
and often charge cloud consumers based on the resources they actually used. There
may even be regulatory or compliance offi cers or systems who monitor the overall
solution or individual components. Each of these user types may access different types
of service from the solution and may have different key quality expectations for service
reliability and service availability. Solution availability requirements begin by specify-
ing the highest level expectations of primary solution users across multiple cloud data
centers (KQI 3), such as:

 1. End user service across multiple [cloud] data centers is at least 99.995% avail-
able (MP 3 measurement).

 2. Cloud consumer ’ s maintenance staff shall experience operations, administra-
tion, maintenance, and provisioning (OAM & P) service across multiple [cloud]
data centers at least 99.995% available (MP 3 measurement).

 Requirements can also be set for single data center service availability (MP 2),
such as:

276 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS

 3. End user service across a single [cloud] data center is at least 99.97% available
(MP 2 measurement).

 4. Cloud consumer ’ s maintenance staff shall experience OAM & P service
across a single [cloud] data center that is at least 99.97% available (MP 2
measurement).

 Alternately, the MP 2 target(s) can be set during the architecture and analysis phase of
solution design from modeling results that make MP 3 requirements feasible and likely.

13.3.2 Solution Reliability Requirements

 Service reliability requirements are often specifi ed as defective transactions per million
service operations (DPM) in conjunction with a maximum acceptable service latency,
so it is clear exactly when a slow service response is considered a failed transaction.
Service latency targets (e.g., median and 95th percentile service latencies) can also be
specifi ed at the solution level, as they were in Section 12.3.2 , “ Service Reliability and
Latency Requirements, ” for the application level. Thus one can construct service reli-
ability and latency summaries like Table 13.1 :

 Formal service reliability and service latency requirements can include:

 1. End users shall experience an average service reliability across multiple [cloud]
data centers of less than 100 defective transactions per million attempts (DPM),
which is at least 99.99% reliable

 2. OAM & P transactions shall experience an average service reliability across
multiple [cloud] data centers of less than 100 defective transactions per million
attempts (DPM), which is at least 99.99% reliable

 3. The maximum acceptable solution service latency is shown in Table 13.1 .

 4. The solution shall continuously meet all service reliability and service latency
requirements (of Table 13.1) when offered load is less than or equal to the
engineered capacity of the solution under test.

 Note that the MP 1 service reliability requirements for application elements in the
service delivery path accumulate to create the solution MP 2 value. While MP 2 service

 TABLE 13.1. Sample Solution Latency and Reliability Requirements

 Transaction
Type

 Maximum
50th Percentile

Latency
(Milliseconds)

 Maximum
95th Percentile

Latency
(Milliseconds)

 Maximum
Acceptable

Service Latency
(Milliseconds)

 Maximum Number
of Defects per

Million Operations
(DPM)

 Logon 3,000 6,000 15,000 20
 Query 500 1,000 5,000 10
 Update 2,000 4,000 10,000 20
 Logoff 500 1,000 6,000 10

RELIABILITY REQUIREMENTS 277

latency and reliability might be better than a straight sum of MP 1 values, one must
always remember that solution component performance must generally be signifi -
cantly better than the solution requirement. Thus, a fi ve 9 ’ s single data center solution
(MP 2) is not built by integrating a series of fi ve 9 ’ s components (MP 1) because
downtime and defective operations typically accumulate across the components of the
solution.

 While service availability requirements or targets consider both MP 2 and MP 3,
service reliability requirements apply only to MP 2 on the assumption that a user will
be served by a single cloud data center throughout a single session unless service from
that cloud data center becomes unavailable (hence impacting availability MP perfor-
mance) or the user is explicitly migrated to another cloud data center (considered in
Section 13.3.4 , “ Elasticity Requirements ”).

13.3.3 Disaster Recovery Requirements

 Beyond requirements for service reliability and availability, solution requirements
should also cover disaster recovery time objective s (RTO) and recovery point objectives
(RPO), along with any special disaster recovery considerations. For example:

 1. The disaster RTO to restore user service to a georedundant [cloud] data center
shall not exceed 2 hours.

 2. The disaster RPO for user data following georedundant recovery shall not
exceed 10 minutes.

 3. The disaster RPO for operations and provisioning data following georedundant
recovery shall not exceed 5 minutes.

 4. Cross - border disaster recovery shall be supported . This requirement gives the
cloud consumer and cloud service provider(s) more fl exibility, such as being
able to recover service for users served by an impacted cloud data center in the
United Kingdom to an alternate cloud data center in Eastern Europe or perhaps
North America. Note that the fl exibility of cross - border disaster recovery may
raise a variety of data privacy, regulatory/compliance, and other issues that must
be worked in addition to the regular technical and operational challenges of
disaster recovery.

13.3.4 Elasticity Requirements

 Rapid elasticity enables the resources available to an application instance to be increased
or decreased while the application is online, rather than the traditional model of requir-
ing the application to be shutdown, reconfi gured, and restarted. As online elastic growth
and elastic degrowth often require different architectures, designs, and procedures than
offl ine growth and degrowth do, requirements should explicitly specify the behavior of
both supported online growth and degrowth. Moreover the growth and degrowth will
have limits and require fi nite time to complete. Thus, elastic growth requirements might
be structured as:

278 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS

 1. A solution instance deployed to a particular [cloud] data center shall support
online capacity growth in increments of < X > [users | capacity units] that com-
plete in no more than < Y > seconds/minutes per increment to a maximum of
< Z > [users | capacity units].

 2. Additional solution capacity can be brought online by instantiating the service
in another [cloud] data center in no more than < X > hours/minutes, with addi-
tional capacity to serve at least < Y > [users | capacity units].

 3. It shall be possible to distribute new users across [elastically grown] new data
center instances of the solution without impacting existing users.

 Elastic degrowth requirements might be structured as:

 4. It shall be possible to gracefully reduce resource usage by an application
instance as traffi c decreases.

 5. It shall be possible to gracefully (i.e., with minimal or no service disruption)
migrate traffi c away from a solution data center instance so that a solution data
center instance (e.g., resulting from a cloudburst event) can be taken offl ine to
reduce online capacity as traffi c load decreases without impacting existing
users.

 The primary online elasticity expectation is that elasticity events should not produce
unacceptable service impact for users, thus requirements similar to those for live migra-
tion can be applied:

 1. In no cases will elastic growth or degrowth cause the maximum acceptable
service latency (from Table 12.1) or maximum DPM rate (also from Table 12.1)
to be exceeded for existing users.

 2. During the elastic growth or degrowth event, the 95th percentile of service
latency will be no greater than twice the applicable normal 95th percentile
service latency requirement (from Table 12.1).

 3. Elastic growth or degrowth shall cause no nonvolatile data — including perfor-
mance counts, provisioning data, or usage/billing information — to be lost.

 Note that elastic de - growth is generally more complicated than elastic growth since
service for existing users should not be impacted.

13.3.5 Specifying Confi guration Parameters

 Achieving solution failure detection and recovery requirements often requires various
protocol timers, maximum retry counts and other confi gurable parameters to be set
appropriately. These confi guration parameters may be necessary to assure the feasibil-
ity of the solution meeting its service reliability and availability requirements, and
often impact the confi guration of one or more individual elements of the solution.
Some teams will capture these confi gurable parameter settings in solution requirements,

SOLUTION MODELING AND ANALYSIS 279

architecture, installation, or confi guration guides; some will push them to the individual
elements ’ requirements or confi guration guides. Regardless of a solution team ’ s specifi c
process, it is often important to explicitly capture the confi guration details necessary
for a solution ’ s high availability mechanisms and make sure the confi guration details
are communicated to impacted elements in order to perform properly and so that solu-
tion reliability and availability expectations can be met when the service is deployed.

 13.4 SOLUTION MODELING AND ANALYSIS

 Having established KQI expectations and requirements, one constructs a reliability
block diagram of the solution to identify elements in the critical service delivery path
(Section 13.4.1) and to verify no single points of failure. One completes both failure
mode effects analysis (FMEA) (Section 13.4.2) and service transition activity analysis
(Section 13.4.3) to assure that solution requirements can be met including inevitable
failures and planned activities. One also completes mathematical modeling to assure
the feasibility of meeting primary data center (MP 2) service availability requirements
and aggregate data center (MP 3) service availability. One completes a paper georedun-
dancy analysis to assure that timing of data backup, replication, synchronization, and
so on, assures that the RPO requirements can be met, and that element confi gurations
(especially heartbeat timers, retry counts, and failure recovery strategies) and architec-
tures make it feasible and likely that RTO requirements can be met (Section 13.4.6).

 This section will use the sample application from Figure 10.1 , which is repeated
as Figure 13.3 .

 13.4.1 Reliability Block Diagram of Cloud Data Center
Deployment

 The fi rst step in solution reliability analysis is to complete a reliability block diagram
of all service impacting solution components in a single cloud data center. This
reliability block diagram should highlight whatever relevant redundancy is deployed
within a single cloud data center. If some cloud data centers have materially differ-
ent confi gurations — such as different redundancy arrangements — then create RBDs for

 Figure 13.3. Sample Cloud Data Center RBD.

Public
Internet

Routing
Perimeter
Security

Load
Balancing

Application
Front End

Application
Back End

Database
Server

Data
Center

Power
Environment

Interconnection

280 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS

each different cloud data center confi guration. Having constructed RBDs of cloud
deployment architectures, one verifi es that there are no single points of failure.

13.4.2 Solution Failure Mode Effects Analysis

 As described in Section 5.1.3 , a solution FMEA considers the service impact of the
failure of any component in the data center reliability block diagram. The FMEA table
should include one row for each solution component, and columns for the expected
impact to primary service for primary solution users (e.g., end users, maintenance
engineers, provisioning staff, regulatory/compliance systems, or users).

 Failure of the primary data center itself is mitigated via georedundancy and is
considered in the context of MP 3 modeling and analysis.

13.4.3 Solution Service Transition Activity Effects Analysis

 One must consider the service impact for all maintenance activities, including elastic
online growth, elastic online degrowth, and software patching and upgrade for each
component in the solution. For each growth, degrowth, or software change (e.g., patch
application, OS upgrade) event the maintenance activity analysis should list:

 • strategy for minimizing service disruption, such as whether traffi c must be
migrated to operational components before service transition action, or whether
any changes need to be made to service orchestration (e.g., new or updated
policies);

 • service impact if operation is successful; and
 • likely service impact and recovery technique if operation is unsuccessful.

 One can organize a service transition analysis like a failure mode analysis except spe-
cifi c activities appear as rows (e.g., horizontal growth of front - end server instances and
degrowth of front - end server instances) with columns for each class of primary users,
and individual cells capture the service impact on that particular class of user when the
particular service transition action is executed.

13.4.4 Cloud Data Center Service Availability (MP 2) Analysis

 Service availability from a single cloud data center (i.e., MP 2 availability) can gener-
ally be modeled algebraically by summing the expected annual downtime for each
element (i.e., MP 1) in the cloud data center RBD. Figure 13.4 shows predicted annual-
ized service downtime for each component of Figure 13.3 , as well as the sum of pre-
dicted downtime across all components and facilities. Inevitably individual components
will perform better or worse in any particular month, quarter or annual measurement
period. For example, the Uptime Institute [UptimeTiers] reports that Tier IV data
centers are likely to experience one 4 - hour failure in a 5 - year period, rather than accrue
48 minutes of service downtime every single year. Nevertheless, annualized downtime

SOLUTION MODELING AND ANALYSIS 281

predictions are standard and they are a useful tool for analysis, comparison, and
planning.

 13.4.5 Aggregate Service Availability (MP 3) Modeling

 MP 3 considers the overall service availability offered across a pool of two or more
geographically redundant cloud data centers hosting the target solution. In the most
general case, users served by an impacted data center will be redistributed across several
operational data centers that are geographically close enough to the impacted users to
deliver service with acceptable service quality and latency. Distributing the recovery
load across multiple operational sites may produce shorter recovery times because
the workload to reregister/reauthenticate, reestablish sessions, and rebuild context of
impacted users would be naturally spread across multiple data centers. While the high
availability mechanisms generally protect an application instance on a single site by
rapidly recovering volatile data for active users and sessions to minimize user visible
service impact of failure and recovery actions, georedundant recoveries do not generally
automatically include volatile user data, so visible impact of failure and recovery is
often greater for those services that use volatile data. Thus, georedundant recovery may
be inappropriate for partial capacity or partial functionality outages where some or all
users of the affected site have at least partial service because a georedundant recovery
may have a more negative impact on the otherwise affected users than continuing
attempts to recover on the affected site itself.

 As described in Section 9.5 , “ Georedundancy Recovery Models, ” and [Bauer11] ,
there are three fundamental georedundant recovery strategies: manually controlled,
server driven, and client initiated; estimating the availability benefi t of each is consid-
ered separately.

 Figure 13.4. Estimating MP 2.

Public
Internet

Routing
Perimeter
Security

Load
Balancing

Application
Front End

Application
Back End

Database
Server

Tier IV
Data

Center

Power
Environment

Interconnection

99.9999%
0.5 min

99.9999%
0.5 min

99.9999%
0.5 min

99.999%
5.3 min

99.999%
5.3 min

99.999%
5.3 min

99.99%
48 min

99.988%

64 minutes per year of MP 2 downtime

Availability
Downtime

282 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS

13.4.5.1 Estimating MP 3 for Manually Controlled Georedundant
Recovery. The latency for manually controlled georedundant recovery is a function of:

 • How rapidly maintenance engineers detect the failure and decide to initiate
manual georedundant recovery,

 • How long it takes for user service to be recovered when manual georedundant
recovery procedure is executed,

 These factors can be summed to estimate the per event service downtime when
manually controlled recovery is executed. After the failure of the primary data center
is corrected, the primary data center will typically be returned to serving user traffi c.
If there is any service impact when the recovered application instance in the primary
data center is returned to serving user traffi c, then that service downtime should also
be included.

 One then considers the predicted MP 2 service unavailability events to identify
which of those events should be mitigated via manually controlled georedundant recov-
ery, and replaces the MP 2 downtime estimate for those events with the sum of esti-
mated manually initiated recovery and switchback latencies. Since manually controlled
georedundant recovery is likely to impact all users served by the target data center,
georedundant recovery is generally undesirable for mitigating partial outages, which
have not impacted 100% of the users of the target data center. Likewise, for some
failures, it will be faster with less overall service impact to simply repair (e.g., restart
some software module) and recover service in the original data center rather than
switching service to one or more georedundant sites, and later recovering it back to
the recovered site.

13.4.5.2 Estimating MP 3 for Server -Driven Georedundant Recovery.
The service availability benefi t of automatic server - driven georedundancy can generally
be estimated using appropriate traditional redundancy models (e.g., active – standby and
N + K load sharing) with appropriate input parameters and appropriate corrections for
failures not recovered via georedundancy; see [Bauer11] for more details. Do not be
surprised if server - driven recovery offers only a modest predicted benefi t compared
with manually controlled georedundant recovery.

13.4.5.3 Estimating MP 3 for Client -Initiated Georedundant Recovery.
Solution clients (e.g., smartphone, laptops, and tablets) can implement client - initiated
georedundancy mechanisms to effi ciently detect service unavailability and autono-
mously initiate service recovery to an alternate application instance in a georedundant
data center. Figure 13.5 illustrates the canonical confi guration: client “ A ” accesses
service offered by a pool of cloud data centers “ B1 ” through “ Bn. ” Assume the client
establishes a service session with cloud data center “ B1, ” a failure occurs that renders
service unavailable from data center “ B1, ” so the client “ A ” must detect unavailability
of “ B1, ” identify an alternate data center offering the service (e.g., via DNS), establish
a session with an alternate cloud data center, and restore service state/context with
redundant application instance before the client can resume using the service. Unlike

SOLUTION MODELING AND ANALYSIS 283

both manually controlled and server - initiated georedundant recoveries, where there is
essentially one party controlling the recovery, control in client - initiated recovery is
inherently distributed across the entire pool of client users because each client is respon-
sible for its own recovery. In addition, since the client is driving the recovery action,
the client can proactively store and rebuild session context to minimize user - visible
impact of the failure event and recovery action.

 The availability of service protected via client - initiated recovery can be predicted
via the Markov client - initiated recovery model from [Bauer11] shown in Figure 13.6 ;

 Figure 13.5. Modeling Cloud - Based Solution with Client - Initiated Recovery Model.

NE �A�

NE B1

NE B3

Client

�A�

Cloud Data Center

�B1�

Cloud Data Center

�B2�

Pool of cloud data centers offering load shared service to clients

Cloud Data Center

�Bn�

 Figure 13.6. Client - Initiated Recovery Model from [Bauer11] .

1. Up on
B1

2. Time Out
Pending

3. Client
Covered

μTIMEOUT

(1 � FEXPLICITλ
CCLIENTFEXPLICITλ

6. Client
Uncovered

μDUPLEX

4. Up on
B2 (or Bn)

μGRECOVER

5. Service
Migration

μMIGRATION

FCLIENTA - FCLUSTER μCLIENT

(1 � CCLIENT)FEXPLICITλ

(1 - FCLIENTACLUSTER)μCLIENT

7. Multiple
Down

μCLIENTSFD

λ

- 1

284 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS

 TABLE 13.2. Modeling Input Parameters from [Bauer11]

 Symbol Description

λ Critical failure rate of solution hosted by target data center instance
experienced by a client

 F EXPLICIT Portion of critical failures of primary system that are explicitly
reported to client systems (rather than profound nonresponse,
which triggers time outs)

 C CLIENT Portion of error responses from critical failures that trigger
client- initiated recovery

μCLIENT Automatic client failover (or takeover) rate
 A CLUSTER - 1 Service availability of alternate data center(s) after solution service

offered by target data center is unavailable
μCLIENTSFD Rate for client to determine that uncovered - to - client failures (e.g.,

failures signaled with wrong return code) are detected
 F CLIENT Portion of automatic client recoveries that succeed
μTIMEOUT Overall time for client to time out from nonresponsive server
μDUPLEX Duplex system recovery rate
μGRECOVER Rate (mathematical reciprocal of duration) of orderly service

migration from alternate georedundant site back to primary data
center

μMIGRATION Rate (mathematical reciprocal of duration) of service disruption on
orderly service migration to alternate data center

Table 13.2 describes the modeling input parameters. [Bauer11] describes how to esti-
mate input parameters and integrate the result with standard modeling results to create
an overall estimate. The two particular considerations when applying this model to
cloud data centers are:

 • λ (critical failure rate experienced by clients) inherently integrates all causes of
failure for both service components in the primary data center, as well as sup-
porting infrastructure like power and network interconnections.

 • ACLUSTER − 1 (service availability offered across pool of data centers after the cli-
ent ’ s selected or primary data center is unavailable) is generally the MP 2 value
of the georedundant data center hosting an alternate instance of the target applica-
tion or solution. This value will be somewhat higher than MP 2 when multiple
alternate data centers are available to serve clients following the failure of one
data center, but operational considerations, like how fresh and accurate the infor-
mation provided to clients regarding available data centers is and the extent
of how excess online capacity maintained ready to serve recovering clients,
impacts the effective ACLUSTER − 1 .

SOLUTION TESTING AND VALIDATION 285

13.4.6 Recovery Point Objective Analysis

 A recovery point analysis identifi es:

 • all nonvolatile data maintained by an application;
 • the offsite backup, replication, or mirroring strategy; and
 • the scheduled frequency of those backup, replication, or mirroring events.

 One then verifi es that the scheduled frequency assures that the RPO requirement is not
violated.

13.5 ELEMENT RELIABILITY DILIGENCE

 Solution architecture and budgeting should establish feasible and reasonable service
reliability and availability requirements for included components, and modeling should
verify that if these budgets are met by the components then the solution - level require-
ments should be met. The purpose of the element reliability diligence is to assure that
it is both feasible and likely that each component in the service delivery path of the
solution will meet the reliability and availability requirements of the solution.

 Design for reliability of traditional information and computer - based systems is
detailed in [Bauer10] and DfR of virtualized applications is covered in Chapter 12 ,
 “ Design for Reliability of Virtualized Applications. ” Ideally, DfR diligence will be
completed on all elements before they are included in the solution, and hopefully that
diligence will assure that it is feasible and likely for the element to meet the quantitative
KQI expectations cascaded from the solution KQI budget discussed in Section 10.6 ,
 “ Solution Service Measurement. ” If the status of an element ’ s DfR diligence is unknown,
or fi eld data suggest elevated service quality, reliability, and/or availability risks, then
a high - level DfR assessment of the element is recommended. Chapter 15 entitled
 “ Appendix: Assessing Design for Reliability Diligence ” in [Bauer10] gives details on
completing such an assessment.

13.6 SOLUTION TESTING AND VALIDATION

 All components included in a solution should have been thoroughly tested at the com-
ponent level, so solution - level testing can focus on verifying both the functional require-
ments for solution features, as well as nonfunctional requirements, like service reliability.
This section considers validation of solution reliability and availability requirements,
especially robustness testing, reliability testing, georedundancy testing, elasticity and
orchestration testing, and stability testing. Adequate predeployment testing should
enable occasional in - service testing (e.g., periodic disaster drills to verify georedundant
recoveries) to be executed to assure the deployed solution is likely to achieve its reli-
ability and availability requirements.

286 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS

13.6.1 Robustness Testing

 Robustness testing at the element level verifi es that likely component related failures
do not cause unacceptable service impact to MP 1. Robustness testing at the solution
level verifi es that inevitable element failures do not cause unacceptable service impact
to MP 2 and MP 3. Component level robustness testing should address the ordinary
hardware, programming, data, power, and other system specifi c failure scenarios of
 “ Figure 4.6 — Traditional Error Vectors ” and “ Figure 12.4 — Robustness Testing Vectors
for Virtualized Applications. ” Solution robustness testing verifi es that the solution level
service impact of these and other failures does not cause unacceptable service impact.
Thus solution level robustness testing should consider at least the following
scenarios:

 • catastrophic failure (i.e., total unavailability) of every individual solution
component;

 • IP connectivity degradation (i.e., packet loss), disruption, and failure between
solution components;

 • network latency and jitter between solution components;
 • overload of individual solution components; and
 • inconsistent real - time clock settings on the physical servers hosting solution

components.

 Data center unavailability and WAN failures are considered in georedundancy testing
(Section 13.6.3).

13.6.2 Service Reliability Testing

 Solution - level testing should verify that service reliability (i.e., DPM) and service
latency requirements (Section 13.3.2) are met for key service operations to primary
solution users. Many million attempts of high volume transactions should be measured
to accurately characterize the service reliability and latency. As it may be infeasible to
attempt millions of iterations of high latency or nominally low volume transactions, a
reasonable number of repetitions should be completed to assure that those transactions
are also acceptable reliable and rapid.

13.6.3 Georedundancy Testing

 Georedundancy testing verifi es prompt service recovery to an alternate data center with
acceptable service impact. Depending on the solution architecture and design, geo-
redundant recovery can be activated in at least the following scenarios:

 1. Catastrophic unavailability of the primary data center

 2. WAN unavailability prevents at least some users ’ client devices from commu-
nicating with the primary data center

SOLUTION TESTING AND VALIDATION 287

 3. Catastrophic (e.g., duplex) failure of component instances at the primary data
center prevent timely service recovery by primary data center

 4. Orderly service migration to drain solution traffi c from primary data center,
prior to execution of a profound reconfi guration or maintenance action

 5. Orderly service migration back to the primary data center from a georedundant
data center

 Georedundancy testing should verify that service disruption for each of these scenarios
is within specifi cation, that is, RTO and RPO requirements are met for disaster recovery
scenarios, and the service disruption for nondisaster scenarios does not exceed the
maximum acceptable service disruption for that scenario.

13.6.4 Elasticity and Orchestration Testing

 Elasticity and orchestration testing should both verify that service reliability require-
ments are met during successful elastic growth and degrowth testing, and that service
orchestration and elasticity failures are automatically detected and recovered without
producing unacceptable service disruption. “ Figure 7.14 — Elasticity Failure Model ”
offers a handful of general failure scenarios to explicitly consider. At least the following
adversarial elasticity scenarios should be considered for formal verifi cation via solution
level testing:

 • Slashdot scenario — (see Section 7.1.2) traffi c spikes faster than the elasticity
slew rate can grow online capacity.

 • Orchestration infrastructure and/or IaaS provider is nonresponsive.
 • IaaS resource stock - out — a resource allocation request fails outright.
 • IaaS resource shortage — IaaS provider offers less resource than was requested.
 • IaaS provider is slow to respond to allocation requests.
 • IaaS allocation requests nominally succeed , but allocated resource is unavailable

or otherwise unusable
 • Wide and rapid fl uctuations in offered load.

13.6.5 Stability Testing

 Stability testing is to verify that the cloud - based solution is completely stable and meets
service reliability requirements while enduring a sustained period of heavy and mixed
usage (often at least 72 hours). Ideally, stability testing will include periods of heavy
load lasting longer than the longest typical daily busy period. For example, if an appli-
cation normally serves 12 continuous hours of heavy load per day, then the stability
test should include periods of heavy sustained loads for signifi cantly longer (e.g., 16
or 18 hours). Provisioning and operational activities should also be included in the
stability test. Ideally, the stability test will include online elastic growth and degrowth,
as well as live migration. Service reliability and latency should be measured throughout
the stability test to assure that requirements are met throughout the test.

288 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS

13.6.6 In Service Testing

 Practicing disaster drills once or twice a year to verify that business continuity plans,
georedundancy confi gurations, manual procedures, and so on all function properly is a
recognized best practice. In addition to verifying the confi gurations and procedures,
disaster drills give staff valuable experience executing disaster plans so they will be
more familiar with procedures and thus be more likely to execute them correctly in an
emergency.

 Just as disaster drills verify proper behavior of disaster recovery plans, limited
failure scenarios can be induced in some solutions ’ production environments (subject
to market ’ s expectations for transactional and service reliability and availability) to
verify effi cacy of automatic failure detection and recovery mechanisms. Techniques
that inject random failures into the system, such as those discussed in Section 11.6.5 ,
 “ Operational Considerations, ” should be used to help verify those mechanisms. Among
other things, solution validation and testing should assure that the recovery scripts are
reliable and robust enough that they can be periodically tested on production systems
to verify the robustness mechanisms and the policies, documentation, and training of
the human staff that operate the solution.

13.7 TRACK AND ANALYZE FIELD PERFORMANCE

 While service availability of individual elements can be averaged across the total popu-
lation of elements to create a broad average, individual solutions are sometimes unique
enough that it is inappropriate to attempt to create a useful and actionable analysis
by simply aggregating fi eld performance of all other cloud consumers ’ solutions. For
example, simply because two different commercial airlines happen to operate the same
type of passenger jets does not mean that they will both achieve similar on - time depar-
ture and arrival performance. At the solution level, operational policies, solution archi-
tectures, and other factors become increasingly important.

 As explained in Chapter 3 , “ Service Reliability and Service Availability, ” the fol-
lowing metrics have traditionally been widely used:

 • Service reliability (see Section 3.4), especially defective transactions per million
attempts. Sophisticated enterprises will track user service reliability for specifi c
transactions (e.g., data query and data update) or specifi c service scenarios (e.g.,
service accessibility and service retainability).

 • Service latency (see Section 3.5), especially median or average service latency.
Sophisticated customers will also consider a tail latency like the 95th percentile
service latency or the percentage of traffi c exceeding a fi xed latency target (e.g.,
greater than 500 milliseconds of latency).

 • Service availability (see Section 3.3).

 As discussed in Section 10.6.1 , MPs 1, 2, 3, and 4 are generally applicable service
measurement points, which can be used as follows:

TRACK AND ANALYZE FIELD PERFORMANCE 289

 • MP 1: Component Instance Availability . Can be measured via a service probe
installed in the data center hosting the target application instance. MP 1 can also
be computed from trouble tickets, assuming those tickets capture suffi cient detail
(e.g., outage and service recovery times, number of users or portion of service
capacity impacted, and portion of functionality lost).

 • MP 2: Primary Data Center Availability . Can be measured via a service probe
installed outside of the target data center. Note that the MP 2 service probe must
be confi gured to access only the target data center so client - initiated and other
georedundant recovery must be inhibited for the MP 2 probe.

 • MP 3: Aggregate Service Availability . must be measured via a service probe
that uses the same client - initiated recovery logic and confi guration (e.g.,
time outs and maximum retry counts) as the client application(s) used by end
users.

 • MP 4: End - to - End Service Availability . Should be measured from actual users
devices or client software, ideally by characterizing actual end user experiences
via software running on client devices. Raw MP 4 data may be read from indi-
vidual client applications if they record appropriate performance metrics and
make that data remotely accessible. Alternately, a service probe application can
be installed on some or all clients to explicitly probe and characterize service
quality, reliability, and availability, and return the data to cloud consumers or
service providers for offl ine analysis.

13.7.1 Cloud Service Measurements

 The rapid elasticity essential characteristic of cloud computing complicates service
reliability and availability measurements because application instances will be dynami-
cally added and deleted, and user traffi c will be dynamically balanced across a varying
pool of online application instances. Thus, if a particular user executes a particular
application transaction repeatedly (e.g., viewing a particular web page or making a
particular service query every hour or every day), then it is possible that at least some
of those requests will be served by different application VM instances, and may even
be served by different data centers. This dynamic and elastic nature of cloud - based
services adds uncertainty to service measurements at the network element level, because
it may be diffi cult both to trace unsuccessful client requests (i.e., slow or defective
transactions) to specifi c application instances, as well as to deduce the end user impact
of specifi c application instance failures.

 Service reliability and service latency are inherently user - oriented metrics that
naturally scale with elastic growth, geographic distribution, and reconfi guration of
cloud - based applications. After all, defective transactions per million operations metrics
naturally normalize when data for one hundred, one thousand, or one million users is
considered from one or more application instances. Likewise, these metrics can be
scaled down to individual application instances. For example, one can meaningfully
analyze the median service latency or reliability of an individual application VM
instance, as well as the median service latency and DPM for a particular data center.

290 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS

 In contrast, traditional service availability is measured and normalized on a per
system or per network element basis, and partial capacity loss outages are normalized
against the engineered capacity of the affected system instance. Service availability of
elastic applications might not be measured the same as service availability of native,
deployments is measured. If the native application uses three server process instances
and failure of one process instance is deemed a 33% capacity loss outage, then the
same prorating can be applied to a non - elastic (i.e., non - cloud) virtualized deployment.
Service availability measurements of cloud deployments are more challenging because
the “ rapid elasticity ” characteristic of cloud computing translates to an elastic normal-
ization factor to prorate outages against. While catastrophic failures that render all VM
instances of a cloud - based application utterly unavailable are obviously deemed total
capacity loss outages, partial capacity loss outages (e.g., impacting a single VM
instance, see Section 7.6.2 , “ Partial Capacity Failure ”) are more common; thus, the key
question is how to prorate these more likely partial capacity loss events. Theoretically,
a partial capacity outage event of a cloud - based application could be prorated via one
of the following strategies:

 • Normalize by Maximum Contracted Service Capacity . This is likely to under-
state the availability impact because some services will only rarely operate at
maximum contracted capacity. If the event occurs at an off - peak period when
engaged capacity is only a small fraction of contracted service capacity, then the
normalized event will appear very small if considered at all.

 • Normalize by Total (Engaged Plus Spare) Online Capacity the Moment Before
the Critical Failure Occurred . This has the adverse impact of making availabil-
ity impacts look smaller for conservative enterprises, which maintain more spare
online service capacity. In addition, the total capacity might be in fl ux if the
failure is caused by or correlated with fl uctuations in traffi c volume that lead the
cloud to add or release capacity.

 • Normalize by the Engaged Capacity the Moment before the Critical Failure
Event Occurred . Engaged capacity prior to the failure might not be known
accurately, and the engaged capacity may well be impacted by the primary failure
event itself, such as during elasticity related failures.

 • Normalize by the “ Average ” Engaged Capacity for the Duration of the Outage
Event . For example, one can determine average service utilization at the same
time on the same day of the week for the past few (e.g., 4) weeks. This works
well for established services with regular and stable traffi c patterns, but might
not work well for services with rapidly growing or unpredictable traffi c volumes,
or new services with insuffi cient historic data to reasonably characterize “ average ”
engaged capacity.

 These imperfect options for normalizing partial capacity loss outages can be avoided
by adopting probed accessibility style metrics that consider the probability that a
 “ typical ” user can successfully establish a new session or complete a new request at
any particular instant, averaged across the entire measurement period, such as an entire
month. These metrics are often measured from a service probe that launches requests

TRACK AND ANALYZE FIELD PERFORMANCE 291

at the target application on a regular basis, such as every few minutes. If the probe
client is successfully served, then the application is deemed to be up; if the probe client
is not served successfully for several sequential attempts, then the application is deemed
to be down. Service availability is computed by normalizing successful service responses
to the probe client against the total number of service attempts executed by the probe
client in the measurement period.

13.7.1.1 On-Demand Self -Service Measurements. Conceptually, on - demand
self - service is analogous to end user service in that it can be neatly characterized with
service reliability and service latency metrics. For example, the service reliability (e.g.,
DPM) of successfully allocating and engaging additional “ elastic ” resource capacity
within a maximum acceptable time and the service latency of successful allocation
and engagement are obvious and useful metrics to characterize one aspect of rapid
elasticity. Thus service reliability and latency metrics can be useful for frequently
executed self service actions. Enterprises should defi ne a service measurement archi-
tecture that enables solution KQIs to be accurately measured and for operations poli-
cies to be deployed so the performance data are examined with suitable regularity and
appropriate corrective actions are taken if performance falls below target.

 Note that for on - demand self service actions that are rarely executed it is generally
more effective to focus on troubleshooting and correcting the individual executions
which failed or experienced unacceptable service latency rather than struggling with
statistical analysis of tiny data sets. After all, it is impractical to consider the service
reliability of an operation that is performed only a couple of times per year.

13.7.2 Solution Reliability Roadmapping

 If a deployed solution is not consistently meeting its reliability and availability
expectations, or if the expectations are rising, then one can construct and execute a
roadmap of reliability - and availability - improving features, testing enhancements,
and other changes. While individual failure events should be subjected to root cause
analysis and corrective actions, occurrence of more than a very small number of
reliability and availability impacting failures suggests that a deeper analysis of the
solution architecture and design should be performed, resulting in recommendations
for improvement. Solution reliability roadmaps often include one or more of the fol-
lowing work items:

 • Changes or enhancements to the failure detection and recovery mechanisms (e.g.,
tuning timers, adding more explicit error messages) implemented for the inter-
faces between elements.

 • Addition or enhancement of products, tools, or documentation to facilitate detec-
tion and troubleshooting of system failures.

 • Enhancements to maintenance activity tools and procedures to reduce system
downtime or mitigate risks associated with performing those activities.

292 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS

13.8 OTHER SOLUTION RELIABILITY DILIGENCE TOPICS

 Three additional topics worth considering are:

 • service - level agreements (SLA) (Section 13.8.1);
 • cloud service provider selection (Section 13.8.2); and
 • written reliability plan (Section 13.8.3).

13.8.1 Service-Level Agreements

 Service - level agreements or SLAs are for business remedies, not expectations of actual
performance. For instance, a retailer that offers an “ unconditional guarantee ” doesn ’ t
imply that customers will be 100% satisfi ed with products purchased from them, merely
that they will replace a product or refund the purchase price if the customer is dissatis-
fi ed. Likewise, a “ 100% ” uptime SLA simply means that the service provider is pre-
pared to offer some remedy for any covered incident. The “ fi ne print ” of generally
surrounds the defi nition of covered events and the offered remedy. While customers
might like signifi cant remedies that make them “ whole ” after an incident (think hom-
eowner or automobile insurance), the service provider may offer only nominal remedies
(e.g., a modest service credit) as a standard part of their offering. Various papers like
 [InfoWeek] offer practical information on constructing cloud computing SLAs. The key
 “ real ” option that cloud consumers should expect is the option to terminate a (long -
 term) contract/agreement without penalties because of major and ongoing SLA breach.

 Thus, one should carefully consider the following when evaluating suppliers ’
SLAs:

 • Does the Measurement Metric Actually Model How the Service Will Be Needed
by Users of the Target Solution? For example, measuring service availability by
probing a data center or application every 5 minutes doesn ’ t mean service was
available every second or every minute, merely that it wasn ’ t down for more than
5 minutes (or longer if the SLA requires sequential failures of two or more 5
minute probes to trigger remedies).

 • Does the Offered Remedy Provide Meaningful Relief if SLA Is Missed? Not
charging customers for the time that a service is unavailable is polite, but does
little to mitigate unavailability of critical services. Unlike insurance companies,
service providers are unlikely to provide what make customers “ whole ” after a
failure, but meaningful remedies to consider are:
� Root cause analysis and corrective actions for any SLA violation.
� Add additional customer support staff and/or replace existing support team.
� Be ineligible to bid for new contracts for other enterprise projects unless all

SLAs are met.
� Right to cancel contract without penalty for any SLA violation.

OTHER SOLUTION RELIABILITY DILIGENCE TOPICS 293

 As important as the SLA itself are:

 • Is It Technically Feasible and Likely for the Service to Meet the SLA Over the
Long Term? Solution architects should design around the feasible and likely
estimated long - term performance levels rather than potentially misleading SLA
claims.

 • What Performance Level Has Been Demonstrated in the Past? As with fi nancial
products, past performance is no guarantee of future results, but it is a baseline.
More importantly, if the supplier is unable or unwilling to provide extensive data
on historic performance, then you should learn why. Is performance data unavail-
able because the service is new (which raises certain risks), or because the service
provider does not actually measure performance (which raises other risks), or
because the service provider does not share performance data with prospective
customers (which raises still other risks).

 More important that the availability SLA offered by a cloud service provider is the best
estimate of the likely long - term average service availability. While past performance
is no guarantee of future results, historic performance is far more credible than a weak
SLA metric with nominal remedies.

13.8.2 Cloud Service Provider Selection

 The IaaS, PaaS, or SaaS service provider that a cloud consumer selects has a profound
impact on the service quality, reliability, and availability that will be experienced by
end users because the cloud service providers have direct control of virtually all the
ingredients that comprise a cloud - based service. In addition to controlling the hardware,
power, operational environment, IP networking data center maintenance staff, and poli-
cies governing operation of the data center, the service provider brings at least some
platform software into the solution and at least some application protocol support (e.g.,
DNS, HTTP/HTTPS, and SNMP). Thus, cloud consumers should carefully determine
the service quality, reliability, and availability targets of considered service providers,
and verify the feasibility and likelihood of those targets being met over the long term.
ODCA SLA levels (i.e., bronze, silver, and gold, platinum) may provide a useful frame-
work to use when discussing service quality, reliability, and availability expectations
with XaaS service providers.

13.8.3 Written Reliability Plan

 A best practice is to create a written reliability plan in the planning phase of a solution
development to lay out the program of reliability diligence in advance. Depending on
the organization ’ s development methodology, the reliability plan may either reference
other documents (e.g., requirements and test plans) and artifacts (e.g., modeling spread-
sheets and reliability reports), or the plan may actually include or embed those items.

294 DESIGN FOR RELIABILITY OF CLOUD SOLUTIONS

The reliability plan may be a document, or a presentation, or a spreadsheet, or a wiki,
or some other scheme for organizing plans and artifacts. The exact representation is
not particularly important; the thoroughness of the plan, care taken in executing the
steps, and promptly notifying members of the project team when risks exceed accept-
able levels is most important.

 The reliability plan, possibly in conjunction with the quality plan and the overall
project plan, should cover the following topics:

 • Solution Scope . What is the end - to - end scope of the solution, and exactly what
components and facilities are in - scope.

 • Solution KQI Targets for Service Reliability and Availability . What are the key
quality indicators for this solution and what are the targets for those KQIs? Note
that these targets can be framed relative to previous releases, other deployments
or competitive offers, or technologies. For example:
� Cloud - based solution will offer same service accessibility, retainability, reli-

ability, and availability as traditional deployment.
� Solution will offer equivalent service availability and service reliability as

market leading offering < X > .
 • Verifi able Solution Reliability and Availability Requirements . Specifi c require-

ments that will drive robustness and stability testing of solution and key compo-
nents of the solution.

 • Plans for Reliability Analyses (e.g., FMEA) . Give plan for what reliability analy-
ses and reviews will be done by who and when, and what document or artifact
will contain the fi nal analysis results.

 • Solution Modeling and Budgeting of Primary Quantitative KQI ’ s to Assure Fea-
sibility of Meeting Targets/Requirements . Constructing mathematical modeling
is a foundation for analyzing the feasibility and likelihood of achieving quan-
titative KQIs. Given some mathematical model, one can create allocations or
budgets of key impairments or results across solution components and facilities,
which solve the model and meet the requirements, and then manage individual
components and facilities to those targets to assure the feasibility of meeting
those requirements over the long term.

 • Data on fi eld reliability, availability, and quality of both previous solution
release(s) and all included components.

 • Plans or Results of DfR Assessments of Components Included in the Solution .
 • Enumeration of Features and Testing Expected to Improve Service Reliability,

Availability, and Latency, along with Brief Rationale for Any Expectations of
Improvement . Optionally, the reliability or availability improvement for the
feature or tested can potentially be estimated via changes to input parameters or
structure to mathematical modeling.

 • Plans to Report on Feasibility and Likelihood of Meeting Reliability Require-
ments with Plan of Record and Committed Resources to Project Leaders and
Decision Makers . As there is inherent uncertainty in assessing risk, and more
time often offers more information to assess risk, there is frequently a temptation

OTHER SOLUTION RELIABILITY DILIGENCE TOPICS 295

to postpone raising a risk to the project team or decision makers in the hope that
more time and more data will reveal that the risk is acceptable. To minimize the
tendency to postpone reporting of bad news, it is often best to explicitly schedule
regular updates on the reliability risk, such as at every project decision review
or every month. Planning this in advance enables the reliability prime to plan to
obtain appropriate updated information prior to each report on reliability risk,
thereby assuring that decision makers and project team see fresh and realistic
assessment of the reliability risk.

 • Plan for Measuring Service Reliability, Availability, Latency, and Quality KQIs
of the Deployed Solution .

 Best practice is to name an individual as the reliability prime for the solution and make
that individual responsible for assessing and reporting the reliability risk to both deci-
sion makers and the project team. As this individual knows they are expected to present
and defend the reliability risk assessment — potentially charged and project - impacting —
 information regularly and held accountable for fi eld performance after release, then
they will be highly motivated to assure that the reliability plan is both complete and
methodically executed. Thus, the reliability prime is the obvious primary author for the
reliability plan.

296

 Cloud computing is a business model that enables computing to be offered as a utility
service, thereby shifting computing from a capital intensive activity to an expense item.
Just as electric utilities and railroad companies freed consumers of power and land
transportation from the capital expense of building private infrastructure, cloud com-
puting enables consumers to focus on solving their specifi c business problems rather
than on building and maintaining computing infrastructure. The U.S. National Insti-
tute of Standards and Technology (NIST) offers fi ve essential characteristics of cloud
computing:

 1. on - demand self - service;

 2. broad network access;

 3. resource pooling;

 4. rapid elasticity; and

 5. measured service.

 A handful of common characteristics are shared by many computing clouds, including
virtualization and geographic distribution. Beyond shifting computing from a capital
expense topic to a pay - as - you - go operating expense item, rapid elasticity and other

 14

SUMMARY

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

SERVICE RELIABILITY AND SERVICE AVAILABILITY 297

characteristics of cloud computing enable greater fl exibility and faster service deploy-
ment than traditional computing models.

 Virtualization is one of the common characteristics of cloud computing. Virtual-
ization decouples application and operating system software from the underlying soft-
ware by inserting a hypervisor or virtual machine manager above the physical hardware,
which presents a “ virtual ” machine to the guest operating system and application
software running on that guest operating system. Virtualization technology can boost
resource utilization of modern server hardware by permitting several application
instances executing in virtual machines to be consolidated onto a smaller number
of physical machines, thereby dramatically reducing the number of physical systems
required. Applications generally leverage virtualization in one or more of the following
usage scenarios:

 • Hardware Independence . Virtualization is used to enable applications to be
deployed on different (e.g., newer) hardware platforms.

 • Server Consolidation . Virtualization is used to enable several different applica-
tions to share the same physical hardware platform, thereby boosting utilization
of the underlying physical hardware.

 • Multitenancy . Virtualization is used to facilitate offering independent instances
of the same application or service to different customers from shared hardware
resources, such as offering distinct instances of an e - mail application to different
companies.

 • Virtual Appliance . Ultimately, software applications can be offered as download-
able “ appliances ” that are simply loaded onto virtualized platform infrastructure.
While a commercially important application may not yet be as simple to buy and
install as a household appliance, like a toaster, virtualization can streamline and
simplify the process for customers.

 • Cloud Deployment . Virtualization is used to enable applications to be hosted on
cloud providers ’ servers, and take advantage of cloud capabilities, such as rapid
elasticity growth and degrowth of service capacity.

 14.1 SERVICE RELIABILITY AND SERVICE AVAILABILITY

 Failures are inevitable. The service impact of failure is measured on two dimensions:

 • Extent . How many users or operations are impacted.

 • Duration . How many seconds or minutes of service impact accrues.

 While extent of failure linearly affects service impact (e.g., impacting 100 user sessions
is nominally twice as bad as impacting only 50 sessions), the duration of impact is not
linear because of the way modern networked applications are implemented. Failure
impacts that are very brief (e.g., less than 10 or perhaps a few hundred milliseconds)
are often effectively concealed from end users via mechanisms like automatic protocol

298 SUMMARY

message retries for transactions and lost packet compensation algorithms for streaming
media; these brief events are often referred to as transient . Failures that are somewhat
longer (e.g., less than a few seconds) will often cause some transactions or sessions to
present signs of failure to users, such as web pages failing to load successfully, call
attempts failing to complete and returning ringback promptly, or noticeable impair-
ments to streaming media sessions. Service users will often accept occasional service
failures and retry failed operations, such as canceling a stuck webpage and explicitly
reloading the page, or redialing after a failed call attempt. If the fi rst (or perhaps second)
retry succeeds, then the failed operation will typically count against service reliability
metrics as a defective operation; since service was only impacted briefl y, the service
will not have been considered “ down ” so the failure duration will not count as outage
downtime. However, if the failure duration stretches to many seconds, then reasonable
users will abandon service retries and deem the service to be down, so availability
metrics will be impacted. This is illustrated in Figure 14.1 .

 Since failures are inevitable, the goal of high availability systems is to automati-
cally detect and recover from failures in less than the maximum acceptable service
disruption time so that outage downtime does not accrue for (most) failure events, and
ideally service reliability metrics are not impacted either, as shown in Figure 14.1 . The
maximum acceptable service disruption target will vary from service to service based
on user expectation, technical factors (e.g., protocol recovery mechanisms), market
factors (e.g., how reliable alternative technologies are), and other considerations. Thus,
the core challenge of service availability of cloud computing is to assure that inevitable
failures are automatically detected and recovered fast enough that users don ’ t experi-
ence unacceptable service disruptions.

 Figure 14.1. Failure Impact Duration and High Availability Goals.

Failure Transient
Condition

Degraded
Service

Service
Unavailable

Maximum acceptable
service disruption―

Often several seconds

~~1 second ~~10 seconds~100 millisecondsNominal
logarithmic

timeline Service Availability
Metrics Impacted

Service Reliability
Metrics Impacted

High availability goal—
automatically detect and recover from

failures in less than the maximum
acceptable service disruption

latency so failure doesn’t accrue
service downtime and impact availability

metrics….and dissatisfy users

FAILURE ACCOUNTABILITY AND CLOUD COMPUTING 299

 14.2 FAILURE ACCOUNTABILITY AND CLOUD COMPUTING

 Information systems require a handful of fundamental ingredients to function. Comput-
ing hardware executing application software interworks with client devices via applica-
tion protocol payloads across IP networks . The computing hardware is installed in a
suitable data center environment and must be provided with suitable electrical power .
Application software and the underlying hardware inevitably require application, user
and confi guration data to provide useful service. Human staff is required to provision
and maintain the data, software, hardware, and supporting infrastructure; enterprise
 policies defi ne the interactions between ingredients and guide the actions of human
staff. In addition to ordinary single failures of, say, hardware components, physical
systems are vulnerable to force majeure or disaster events, like earthquakes, fi res, and
fl oods, which can simultaneously impact multiple ingredients or components. This is
illustrated in Figure 14.2 , repeated from Figure 3.4 . All of these ingredients are subject
to risks, which can compromise ingredient availability, thereby impacting end user
service.

 Traditionally, enterprises broadly factored accountability for failures and outages
into three broad buckets: product attributable, customer (or enterprise or user) attribut-
able, and externally attributable. Figure 14.3 (repeated from Figure 4.1) visualizes the
traditional factorization of accountability by ingredients. Accountability for each ingre-
dient maps across the three traditional categories as follows:

 • Product suppliers are primarily accountable for the hardware and software they
supply, and the ability of that hardware and software to interwork with other
systems via defi ned application protocol payloads.

 • Customers are accountable primarily for the physical security, temperature,
humidity, and other environmental characteristics of the facility where the hard-
ware is installed, as well as for providing necessary electrical power and IP
network connectivity. Customers are also responsible for their application, user,
and confi guration data, as well as for the operation policies and human staff.

 Figure 14.2. Eight - Ingredient Plus Data Plus Disaster (8i + 2d) Model.

System

Software

Hardware

Environment

Power

Human

PolicyApplication
Payload

IP Network

Data

Force majeure and disaster events

300 SUMMARY

 • External : Data centers are inherently vulnerable to force majeure and disaster
events like earthquakes, tornadoes, fi res, and so on. As these risks are not appro-
priately attributed to either the customer or the supplier, they are placed in this
 “ external ” attributability category.

 Cloud computing fundamentally changes the accountability model because there is no
longer a monolithic customer who buys and operates equipment. Instead, there is a
cloud service provider who owns and operates cloud computing facilities (analogous
to a landlord), and a cloud consumer who leases those computing facilities (analogous
to a rental tenant). Thus, the accountabilities that were solely the responsibility of the
 “ customer ” in the traditional model must now be split between the cloud consumer and
the cloud service provider. The exact division is determined by the particular cloud
service model (i.e., infrastructure as a service [IaaS], platform as a service [PaaS], and
software as a service [SaaS]); Figure 14.4 (repeated from Figure 10.7) gives a typical
breakdown of accountabilities.

 • Cloud service providers are responsible for reliable operation of the compute,
storage, and networking equipment (including load balancers and security appli-
ances) in their data centers which host their cloud service offering. Along with
responsibility for the hardware itself and the base software, the cloud service
provider has responsibility for providing electrical power, highly reliable IP
networking, and maintaining a physically secure data center with acceptable
temperature, humidity, and other environmental conditions. The cloud service
provider is also responsible for the human maintenance staff, contractors,
and suppliers who support that data center, as well as the operational policies

 Figure 14.3. Traditional Outage Attributability.

Data Center

Software

Hardware

Environment

Power
Human

Policy

Application
Payload

IP Network

Product-attributable outages are primarily
triggered by:

1. the system design, hardware, software,
components, or other parts of the system,

2. scheduled outage necessitated by the
design of the system, or …

Customer-attributable outages are
primarily triggered by:

1. customer’s [service provider] procedural
errors,

2. office environment, for example power,
grounding, temperature, humidity, or
security problems, or ...

External-attributable outages are caused
by natural disasters such as tornadoes or
floods, and outages caused by third parties
not associated with the [customer/service
provider] or the [supplier]…

Data Customer is responsible for their own data

Force Majeure and Disaster Events

FACTORING SERVICE DOWNTIME 301

followed by those people when designing, operating, and maintaining the data
center.

 • Software suppliers are responsible for delivering and supporting the software
running on the virtualized platform. Note that there are often many software
suppliers contributing different platform and application software components,
and some of the software may even be supplied by the cloud service provider,
the cloud consumer, or both.

 • The cloud consumer is the enterprise (or individual) who pays for the cloud
services. The cloud consumer is responsible for their own enterprise or appli-
cation data (e.g., user records and inventory data) and service confi guration, such
as fi rewall settings and load balancer policies. The cloud consumer is also respon-
sible for the staff that provisions their data (e.g., adding users and manipulat-
ing enterprise data) and operates the application. In addition, the cloud consumer
is responsible for assuring that force majeure risks are adequately mitigated
via service continuity and disaster recovery planning, as well as georedun-
dancy. While cloud service providers offer the services necessary to construct
robust georedundancy confi gurations and disaster recovery plans, the cloud
consumer has primary responsibility for business continuity planning of their
service and data.

 14.3 FACTORING SERVICE DOWNTIME

 The outage accountability model of cloud computing can also be factored based on
process areas as shown in Figure 14.5 (repeated from Figure 4.5). The risks to software,

 Figure 14.4. Sample Outage Accountability Model for Cloud Computing.

Cloud Data Center

Software

Hardware

Environment
Power

Application
Payload

Human

Policy
Software

IP Network

Data

Data

Human

Policy

Force majeure and external events

Cloud consumer is responsible
for their staff, operational

policies, and the correctness of
their data

Software supplier is responsible
for their software and

interworking with other
elements via IP networking

Cloud service provider is
responsible for their data
center, as well as for the

virtualized hardware platforms
and preservation of cloud

consumers’ data

Cloud consumer is responsible
for arranging to mitigate force

majeure or external events
impacting individual data

centers hosting their application

302 SUMMARY

hardware, and payload ingredients are primarily managed and mitigated via the design
for reliability and quality processes of the equipment and application suppliers. The
risks to power, environment, and IP networking infrastructure are primarily considered
in the context of data center best practices and standards like [Uptime] and [TIA942] .
The data, human, and policy ingredients are addressed via IT service management best
practices and standards like ITIL, ISO/IEC 20000, and COBIT. And the risk of force
majeure events is mitigated via business continuity and disaster recovery plans. While
IT service management generally considers service continuity, it is useful to explicitly
consider disaster recovery because it presents different risks and challenges to high
availability mechanisms. Note that it is essential that cloud consumers and cloud service
providers have aligned and interlocked their roles and responsibilities for IT service
management and disaster recovery to assure that service is rapidly restored after any
failure or disruption event.

 A side benefi t of the risk by process area analysis of Figure 14.5 is that is offers a
simple and actionable factorization of cloud downtime into four categories:

 • Product - attributable downtime for events primarily attributable to application
software and virtualized compute and storage hardware. Traditional service avail-
ability claims (e.g., “ fi ve 9 ’ s ”) referred exclusively to product attributable service
downtime.

 • Data center - attributable downtime for events primarily attributable to power,
environment, and IP networking facilities and infrastructure. Note that one
should explicitly decide if IP equipment, like routers, end - of - row and top - of -
rack switches, security appliances, and load balancers, are lumped into data
center - attributable or product - attributable downtime categories. Each of these
components can be reasonably covered in either product - attributable or data

 Figure 14.5. Outage Responsibilities of Cloud by Process.

Software

Hardware

Environment
Power

Application
Payload

Human

Policy

IP Network

Data
Human

Policy

Force Majeure and External Events

Cloud consumer’s IT service
management processes (e.g.,

ITILv3, ISO/IEC 20000)

Supplier’s product quality and
design for reliability processes

Cloud service provider’s IT
service management processes

(e.g., ITILv3, ISO/IEC 20000)

Cloud consumer’s (and possibly
service provider’s) disaster

recovery processes

Data

Data center infrastructure
standards and processes (e.g.,

Uptime Institute, TIA-942))

SERVICE AVAILABILITY MEASUREMENT POINTS 303

center - attributable category; the key is to make sure that these crucial elements
are not overlooked.

 • IT service management - attributable downtime for downtime primarily attrib-
utable to elastic growth and degrowth, software release management, and for
downtime prolonged by ineffective problem/event/incident management
procedures.

 • Disaster attributable downtime : Force majeure events that destroy a data center
or render it inaccessible or unavailable are fortunately so rare that it is inappro-
priate to estimate an average annualized service downtime attributable to disas-
ters. Instead, rare disaster events are expected to be recovered within the target
RTO and lose no more data than the target RPO.

 The best practice to manage application service availability is to create a feasible
downtime budget and manage architecture, design, testing, deployment, and operations
to maximize the likelihood that the budget is not exceeded. Table 14.1 (repeated from
Table 10.4) shows how a sample “ fi ve 9 ’ s ” budget for a traditional application morphs
for virtualized deployment and for cloud deployment. The key insights are of this
sample budget are:

 • Software downtime is likely to remain essentially the same across all three
deployment options.

 • Hardware related downtime changes in virtualized and cloud deployments; it
does not vanish.

 • Product attributable planned and procedural or IT service management downtime
remains a signifi cant contributor to service downtime. Consumer - attributable IT
service management downtime (e.g., due to human provisioning mistakes) is in
addition to this downtime budget allocation.

 14.4 SERVICE AVAILABILITY MEASUREMENT POINTS

 To analyze and understand the reliability and availability of cloud computing, the
authors recommend considering four measurement points (MPs) illustrated in Figure
 14.6 (repeated from Figure 10.10):

 • Component Instance Level (MP 1) . Solutions are built from instances of various
components like fi rewalls, load balancers, application servers, and databases
that together deliver valuable services to end users. A fundamental MP is of
the service delivered by each component instance. If an individual component
instance is protected by a redundant component instance, then it is best to
consider the overall availability of component service across the pool of
instances.

 • Primary Data Center Level (MP 2) . An ensemble of component instances will
generally be arranged in one or more data centers and integrated to offer services

304 SUMMARY

 TABLE 14.1. Evolution of Sample Downtime Budgets

 Sample “ Five 9 ’ s ” Product or Application Attributable Downtime Budgets
 Annual
Down

Minutes %
 Traditional
Deployment Virtualized Deployment Cloud Deployment

 Hardware related — target: 30 seconds = 0 minute 30 seconds
 Hardware failure
downtime — service
downtime triggered
by hardware
failures.

 Virtualized hardware
platform downtime —
 service downtime
attributed to
virtualized hardware
resources (e.g., virtual
CPU, memory, disk,
and networking).

 Application downtime
recovering from
ordinary XaaS
failures — service
downtime for
application to detect
and recover from
ordinary XaaS
platform failures.

 0.50 10

 Software attributable — target: 225 seconds = 3 minute 45 seconds
 Application software failures — service downtime due to software failures of
platform and/or application software.

 3.75 71

 Procedural and maintenance attributable — target: 60 seconds = 1 minute 0 second
 Successful scheduled
activities — service
downtime “ by
design ” for
successful upgrade,
update, retrofi t,
hardware growth
and other scheduled
or planned
maintenance
activities.

 Application software -
 related planned and
procedural
downtime — product -
 attributable service
downtime attributed to
successful and
unsuccessful planned
and procedural
activities associated
with application
software.

 Product - attributable
cloud maintenance
activities — chargeable
service downtime for:
 • elastic capacity

growth and
degrowth;

 • software upgrade,
update, retrofi t, and
patching;

 • live migration; and
 • other IT service

management
activities.

 1.00 19

 Unsuccessful
procedural
activities — service
downtime attributed
to unsuccessful or
botched maintenance
activities, such as
upgrade, update,
retrofi t, hardware
growth, and
provisioning.

 Virtualized platform -
 related planned and
procedural
downtime — product -
 attributable service
downtime attributed to
successful and
unsuccessful planned
and procedural
activities associated
with the virtualized
hardware platform.

 Total 5.25
 Availability 99.999%

SERVICE AVAILABILITY MEASUREMENT POINTS 305

to end users. MP 2 captures the overall performance of the solution services
offered by the ensemble of component instances in a particular (nominally
primary) data center, as well as the data center itself and the impact of IT service
management.

 • Aggregate Service Level (MP 3) . Often solutions are georedundantly deployed
across several data centers so that one data center can recover service for users
of another data center when a disaster or catastrophic failure renders service from
the users ’ primary data center unavailable. MP 3 captures the overall aggregate
service performance across a pool of data centers, excluding user service impair-
ments from WAN and access network equipment and facilities.

 • End - to - End Service Level (MP 4) . End users of solution services are rarely
located in the data center hosting the ensemble of component instances imple-
menting the solution. Instead, end users access solution services via some client
device like a smartphone, laptop, tablet, set top box, etc., across a wireless or
wireline access network and wide area network to communicate with the data
center hosting the component instances implementing the service. These access,
backhaul and wide area networking equipment and facilities are subject to fail-
ures and impairments that can compromise the users ’ quality of experience. MP
4 integrates the impact of these access, backhaul and WAN considerations along
with the aggregate service of MP 3.

 Application suppliers, cloud consumers, and cloud service providers share account-
abilities for component instance availability (MP 1), primary data center availability
(MP 2), and aggregate service level availability (MP 3). End - to - end service availability
(MP 4) introduces accountability for numerous communications service providers and
others who are often outside of the control of the cloud consumer and the cloud service
provider. Thus, one must carefully consider the service MPs when setting service level
expectations and accountabilities.

 Figure 14.6. Measurement Point s (MP s) 1, 2, 3, and 4.

WAN or
Public

Internet

Cloud
data

center
MP 3:

Aggregate
Service

Measurements

MP 4: End-to-
End Service

Measurements

MP 2: Primary
Data Center

Service
Measurements

Wireless
Access

Network

Backhaul
Network

Cloud
data

center

MP 1: Single
Component

Instance
Measurements

306 SUMMARY

 14.5 CLOUD CAPACITY AND ELASTICITY CONSIDERATIONS

 Historically, enterprises have had to predict the expected traffi c levels for an application
months in advance so the organization could acquire and install suffi cient hardware
and software resources, arrange for suffi cient networking bandwidth and intermediate
systems (e.g., security appliances and load balancers), as well as install and confi gure
application software and data to assure suffi cient service capacity was available to
serve the anticipated load. Deploying all of these resources often entailed great capital
and operating expenses, and carried a huge fi nancial risk for the enterprise. If the
enterprise was too pessimistic in their predictions, then users would saturate the system
and traffi c would be turned away, thereby impacting customer goodwill and perhaps
revenue; and if the enterprise was too optimistic, then all of the excess capital expense
and operating expense for the unneeded capacity would be carried forward by the
enterprise, possibly for years, because it was hard to release and reuse resources that
were no longer needed.

 The essential cloud computing characteristic of rapid elasticity can eliminate virtu-
ally all capacity planning risks and capacity planning work itself because cloud comput-
ing enables cloud consumers to request or release resources on - the - fl y, and then pay
for the resources actually used. As a result, cloud expenses can track with the actual
workload, rather than being a function of installed capacity (which was driven by
capacity plans completed months earlier). Note that rapid elasticity makes resources
available promptly (e.g., in hours), but not instantly (e.g., in seconds), so rapid elasticity
is not an alternative to redundancy for high availability, and it does not eliminate the
need for overload control mechanisms. Careful application monitoring and manage-
ment should minimize the frequency of overload events (and associated service reli-
ability impact) by elastically growing online service capacity ahead of offered load.
Naturally, the complexity of rapid elasticity introduces a variety of reliability risks,
and these were considered in Chapter 7 . Growing — or degrowing — the online service
capacity of an application or solution requires careful coordination of added (or deleted)
compute resources, storage resources, network bandwidth, load balancer confi gura-
tions, and application software and confi guration. Automating these tasks so growth or
degrowth operations complete rapidly and reliably is the purpose of service orchestra-
tion. Service orchestration and the reliability risks of orchestration were considered in
Chapter 8 .

 14.6 MAXIMIZING SERVICE AVAILABILITY

 While cloud computing slightly increases the risk of critical failures due to the added
complexity of virtualization, rapid elasticity and increased resource sharing, as well as
the associated IT service management risks, cloud computing does present opportuni-
ties to mitigate both the preexisting and new reliability risks to potentially offer higher
service availability than traditional deployment scenarios. Consider the opportunities
to reduce service downtime in each of the four general categories of service downtime
as described in the next sections.

MAXIMIZING SERVICE AVAILABILITY 307

 14.6.1 Reducing Product Attributable Downtime

 Virtualization should have a minimal impact on failure rates: reliability of application
software executed in virtual machines should be comparable with reliability of execu-
tion in native environments, and the failure rate of the underlying physical hardware
should be nominally the same when hosting a virtualization manager and application
as when executing an application natively (i.e., without virtualization). To assure com-
parable service availability of applications in virtualized confi gurations, it is important
that failure detection and recovery times of virtualized deployments be comparable
with native deployment. While virtualized implementations of traditional redundancy
strategies (e.g., active/standby, active/active) should offer comparable performance
to native (nonvirtualized) deployments, virtualization offers some new redundancy
options, such as activating paused or snapshot images, as well as enabling different
redundancy models. For example, traditionally one might assume a 4 - hour mean time
to repair (MTTR) for a hardware failure of the server natively hosting a critical applica-
tion, but virtualization can support (offl ine) migration of an impacted application from
failed hardware to an operational hardware platform that has suffi cient spare capacity
in far less time, thus improving application service availability by shortening the effec-
tive (i.e., “ virtualized ”) hardware MTTR. A detailed analysis of the software reliability
risks and high availability options of virtualization are considered in Chapter 5 , the
hardware reliability risks of virtualization and their impact on service availability are
discussed in Chapter 6 , and virtualization ’ s impact on service transition activities is
addressed in Section 4.5 .

 14.6.2 Reducing Data Center Attributable Downtime

 Cloud computing makes it easy for cloud consumers to shop around to pick an IaaS or
PaaS service provider who offers the desired data center performance at the lowest total
cost for the cloud consumer.

 14.6.3 Reducing IT Service Management Downtime

 Reduction of downtime associated with service management activities, such as software
upgrade or patch, are discussed in Section 11.3 , “ IT Service Management Consider-
ations. ” In summary, service transition tools and procedures should have the following
requirements:

 • Automation (e.g., service orchestration) to replace manual procedures and make
use of mechanisms such as live migration when appropriate.

 • Ability to fulfi ll the reliability requirements associated with the service transition
activity (e.g., x seconds of service downtime).

 • Use of the Open Virtualization Format (OVF) or similar to provide confi guration
information so that it can be clearly defi ned and validated by the tools.

 • Ability to create and confi gure an updated instance of the application while
running the old version, and to seamlessly stop the old version and activate the

308 SUMMARY

new version once is ready. This may be performed on the same server or on a
different server dependent upon the type of maintenance activity and the avail-
ability of resources.

 • Clear, accurate documentation and training is provided for those managing the
service transition activities.

 • Thorough testing of the maintenance procedures must be performed to ensure
the procedures meet the reliability requirements for service transition activities.

 14.6.4 Reducing Disaster Recovery Downtime

 Geographic distribution is a common characteristic of cloud computing, but geo-
graphic distribution does not automatically mean geographic redundancy and support
for disaster recovery. Leveraging geographic distribution to create geographically dis-
tributed redundancy (a.k.a., georedundancy) for disaster recovery requires careful plan-
ning, confi guration, and testing to assure that user service can be recovered fast enough
(i.e., the recovery time objective or RTO) with acceptably fresh application data
following a disaster (i.e., the recovery point objective or RPO) and to meet the needs
of the business. Disaster recovery time objectives are typically measured in hours or
days, and thus disaster recovery mechanisms alone generally offer limited mitigation
for catastrophic failure events. Appropriately engineered applications and solutions
can leverage spare online capacity in other data centers to mitigate catastrophic
failure events by rapidly detecting failures and redirecting workloads to the spare
online capacity much more quickly than the traditional (manual) disaster recovery
plans. Geographic distribution, georedundancy and disaster recovery are considered in
Chapter 9 .

 14.6.5 Optimal Cloud Service Availability

 It is tempting to assume that given the vast pool of cloud computing resources avail-
able, service downtime should vanish because somewhere there is an instance of the
application that is available and capable of providing service for each user. While there
may be one or more instances of the target application available for service somewhere
in the cloud, it is not practical to achieve 100% service availability for reasons
including:

 • Noninstantaneous Failure Detection . After clicking a button or icon, users gen-
erally wait for an operation to complete. For certain types of failures, one must
simply wait for the request to time out to determine that the application is not
available for service.

 • Noninstantaneous Service Recovery . Recovering authenticated services often
requires reauthenticating the user, with the redundant server or application
instance entailing security credentials to be exchanged and validated. Recovering
session - oriented and stateful services requires rebuilding or recreating context
to minimize user visible service impact. Both of these activities take time, during
which service is unavailable to the impacted user.

RELIABILITY DILIGENCE 309

 • Noninstantaneous Access to the User ’ s Data . User service often requires running
software, application data, and user data. For example, while a running e - mail
server instance is necessary for e - mail service, users also expect access to their
personal inbox data to be accessible via that e - mail server. Thus, service recovery
involves restoring access to the user ’ s individual data, and that data may not be
 “ instantly ” available to the alternate server instance.

 Cloud computing makes it feasible to consider redundant compute arrangements, such
as where a client application maintains authenticated sessions with two or more applica-
tion instances, sends each individual request to each of those applications instances
simultaneously, and uses the fi rst correct response, thereby mitigating at least some
application downtime. Unfortunately, determining the fi rst “ correct ” response may
not be trivial, and assuring consistency and correctness of data across a pool of servers
operating in parallel can be challenging. While it is fi ne to have any DNS server instance
return an IP address for a particular domain name independent of all other DNS server
instances, one does not want multiple instances of your bank ’ s online application
to permit independent application instances to make simultaneous and overlapping
withdrawals from your account to unknowingly overdraft your bank account. It is
certainly feasible to leverage new redundancy options offered by cloud computing to
boost service availability, but maximizing these potential service availability benefi ts
will probably require enhancements to service architectures, application protocols, and
application and client software.

 14.7 RELIABILITY DILIGENCE

 Highly reliable and highly available services can be implemented and deployed through
appropriate reliability diligence. The authors presented a cloud solution design for reli-
ability process in Chapter 13 , which is visualized in Figure 14.7 (which is the same as
Figure 13.1). Many readers will recognize close similarities with the service strategy,
service design, service transition, and continual service improvement activities of IT
service management processes, like ITIL (service operation is purely an IT service
operations activity and thus is not covered by design for reliability diligence). Regard-
less of whether reliability diligence is worked in the context of an R & D activity, in an
IT service management activity or some other workfl ow process, the key activities of
Figure 14.7 and Chapter 13 should be addressed:

 • Capture customers ’ service reliability and availability expectations in
requirements.

 • Perform analysis and modeling to assure it is feasible and likely that the require-
ments can be met with the target architecture, feature set, and proposed project
plan.

 • Assure that appropriate design for reliability diligence is completed on solution
elements to assure that those elements will meet the solution ’ s requirements.

310 SUMMARY

Chapter 12 reviewed the recommended design for reliability diligence for virtual-
ized applications.

 • Test the solution to assure that service reliability, latency, quality, and stability
are acceptable, and that robustness and recovery mechanisms function properly
and meet all corresponding reliability requirements.

 • Track and analyze fi eld performance to drive continual service improvement, and
to validate and calibrate predictive models to be used in future solution releases.

 14.8 CONCLUDING REMARKS

 Cloud computing is a compelling business model for delivering information services;
many new applications will be explicitly developed for cloud deployment, and many
preexisting applications will evolve to cloud deployment. The dynamic and fl exible
characteristics of cloud computing provide the basis for highly reliable, always avail-
able services. The careful analysis of the reliability and availability risks and architec-
tural opportunities presented in this book offers guidance on how to develop cloud - based
solutions that meet or exceed service reliability and availability requirements of tradi-
tional deployments.

 Figure 14.7. Design for Reliability of Cloud - Based Solutions.

Solution
Reliability &
Availability

Requirements

Solution
Modeling &

Analysis

Element
Design-for-
Reliability
Diligence

Solution
Testing &
Validation

Tracking &
Analysis of

Field
Performance

Captures
customers’

expectations

Assures
feasibility of

achieving
customers’

expectations

Assures that
included

elements meet
solution’s

needs

Assures
likelihood that
solution meets

customers’
expectations

Monitors actual
performance
and drives
corrective

actions

Cascade
budgets/targets
to included
elements

Root cause, performance, and trend analysis drives:
1. Refinement of solution requirements
2. Validation, calibration, and refinement of solution modeling and analysis
3. Rechecks of element reliability diligence
4. New/improved robustness and stability test cases
5. Input to solution reliability roadmapping

Analysis drives
robustness and
stability test
planning

Cascade
requirements

to included
elements

311

 3G Third - generation wireless network (e.g., UMTS)

 4G Fourth - generation wireless network (i.e., LTE)

 ACID Atomicity, consistency, isolation, and durability

 API Application programming interface

 APM Application performance management

 ARP Address resolution protocol

 BASE Basically available, soft state, eventual consistency

 BRAS Broadband remote access server

 CapEx Capital expense

 COTS Commercial off the shelf

 CPU Central processing unit

 CSA Cloud Security Alliance

 CSP Cloud service provider

 DAS Direct attached storage

 DDoS Distributed denial of service (attack)

 DfR Design for reliability

 DHCP Dynamic host confi guration protocol

 DMTF Distributed Management Task Force

 DNS Domain name system

 DoS Denial of service (attack)

 DR Disaster recovery

 DSL Digital subscriber loop, a copper access technology

 DSLAM Digital subscriber loop access module

 EOR End - of - row Ethernet switch

 FAA U.S. Federal Aviation Administration

 FIT Failures in time (10 9 hours)

 FMEA Failure mode effects analysis

ABBREVIATIONS

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

312 ABBREVIATIONS

 FRU Field replaceable unit (hardware)

 GPON Gigabit passive optical networking, an optical access technology

 GR Geographic redundancy

 HFI Hardware fault insertion

 IaaS Infrastructure as a service

 IC Integrated circuit

 ICT Information and communication technology

 IETF Internet Engineering Task Force

 IP Internet protocol

 IS Information systems

 iSCSI Internet Small Computer System Interface

 ISP Internet service provider

 IT Information technology

 ITIL Information Technology Infrastructure Library

 ITSCM IT service continuity management

 ITSM Information technology service management

 ITU International Telecommunications Union

 KPI Key performance indicator

 KQI Key quality indicator

 LAN Local area network

 LTE Long - term evolution, a fourth - generation wireless networking standard

 MOP Methods of procedure

 MOS Mean opinion score

 MP Measurement point

 MTBCF Mean time between critical failures

 MTBF Mean time between failures

 MTTR Mean time to repair

 MTTRS Mean time to restore service

 NAS Network attached storage

 NIC Network interface card

 NIST U.S. National Institute of Standards and Technology

 OAM Operations, administration, and maintenance

 OAMP Operations, administration, maintenance, and provisioning

 ODCA Open Data Center Alliance

 OpEx Operating expense

 OS Operating system

 OVF Open Virtualization Format

ABBREVIATIONS 313

 PaaS Platform as a service

 PC Personal computer

 RAID Redundant array of inexpensive (or independent) disks

 RBD Reliability block diagram

 RPO Recovery point objective

 RTO Recovery time objective

 RTP Real time protocol

 SaaS Software as a service

 SAN Storage area network

 SIP Session initiation protocol

 SLA Service - level agreement

 SLR Service - level requirement

 SPOF Single point of failure

 TIA Telecommunications Industry Association

 TOR Top - of - rack Ethernet switch

 VBF Vital business function

 VLAN Virtual local area network (LAN)

 VM Virtual machine instance

 VMM Virtual machine manager

 VNIC Virtual network interface card

 VPN Virtual private network

 WAN Wide area network

 XaaS Refers to one or more of: software as a service, platform as a service,
and infrastructure as a service.

314

 [Arbor] Worldwide Infrastructure Security Report, Volume VI, 2010 , Arbor Networks , http://
www.arbornetworks.com.

 [AWS08] Amazon Web Services Launches “ Elastic IPs ” — Static IPs for Dynamic Cloud Com-
puting, March 27, 2008 , http://www.businesswire.com/portal/site/google/?ndmViewId=news_
view& newsId=20080327005155 & newsLang=en.

 [AWSFT] Amazon Web Services Building Fault - Tolerant Applications on AWS, May 2010 ,
 http://d36cz9buwru1tt.cloudfront.net/AWS_Building_Fault_Tolerant_Applications.pdf.

 [Bauer10] Design for Reliability: Information and Computer - Based Systems , Eric Bauer , 978 -
 0470604656 , Wiley - IEEE Press , 2010 .

 [Bauer11] Eric Bauer , Randee Adams , and Dan Eustace , Beyond Redundancy: How Geo-
graphic Redundancy can Improve Service Availability and Reliability For Computer - Based
Systems , Wiley - IEEE Press , 2011 .

 [Bigtable] Fay Chang et al., Bigtable: A Distributed Storage System for Structured Data, http://
static.googleusercontent.com/external_content/untrusted_dlcp/labs.google.com/en/us/papers/
bigtable- osdi06.pdf.

 [BT.500] Methodology for the Subjective Assessment of the Quality of Television Pictures ,
International Telecommunications Union Recommendation ITU - R BT.500 - 12, 09/ 2009 .

 [CASS] Avinash Lakshman and Prashant Malik , Cassandra — A Decentralized Structured
Storage System , Cornell University , http://www.cs.cornell.edu/projects/ladis2009/papers/
lakshman- ladis2009.pdf , November 13, 2009 .

 [CSAa] Top Threats List, https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf.

 [CSAb] Guidelines, https://cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf.

 [CSAc] Cloud Controls, https://cloudsecurityalliance.org/guidance/CSA%20Cloud%2
Controls%20Matrix%20(CCM)_R1.1_FINAL.xlsx.

 [CSAd] Cloud Provider Assessment Questions, https://cloudsecurityalliance.org/guidance/
CSA - CAI - Question - Set.1.0.xlsx.

 [DSP0102] Architecture for Managing Clouds, http://dmtf.org/sites/default/fi les/standards/
documents/DSP- IS0102_1.0.0.pdf.

 [DSP1050] Ethernet Port Resource Virtualization Profi le , Distributed Management Task Force ,
DSP1050, Version 1.0.0, October 21, 2010 .

REFERENCES

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

REFERENCES 315

 [DSP1057] DMTF DSP1057 Virtual System Profi le , http://www.dmtf.org/sites/default/fi les/
standards/documents/DSP1057_1.0.0_0.pdf, Version 1.0.0, April 22, 2010 .

 [DSP2017] Open Virtualization Format White Paper, Distributed Management Task Force,
DSP2017, Version 1.0.0, February 9, 2009 , http://dmtf.org/standards/ovf .

 [Edberg] Jeremy Edberg , Customer Best Practices for Surviving a Cloud Outage , Virtual Cloud
Connect conference, September 29, 2011 .

 [ENISAa] Cloud Risk Assessment, http://www.enisa.europa.eu/act/rm/fi les/deliverables/cloud -
 computing - risk - assessment/at_download/fullReport.

 [ENISAb] Cloud Assurance Framework, http://www.enisa.europa.eu/act/rm/fi les/deliverables/
cloud - computing - information - assurance - framework/at_download/fullReport.

 [FAA - HDBK - 006A] Federal Aviation Administration Handbook: Reliability, Maintainability,
and Availability (RMA) Handbook , FAA - HDBK - 006A, January 7, 2008 .

 [GR2841] Generic Requirements for Operations Systems Platform Reliability , Telcordia Tech-
nologies System Documentation, GR - 2841 - CORE, Issue 1, June 1994 .

 [Hamilton] James Hamilton , On Designing and Deploying Internet - Scale Services, http://www.
usenix.org/event/lisa07/tech/full_papers/hamilton/hamilton_html/.

 [InfoWeek] Jonathan Shaw , 4 Steps to Cloud Quality, Information Week Reports, November
8, 2011, http://reports.informationweek.com/abstract/5/8539/Cloud - Computing/4 - steps - to -
 cloud - quality.html.

 [ISO24762] ISO/IEC 24762:2008, Information Technology — Security Techniques —
Guidelines for Information and Communications Technology Disaster Recovery
Services.

 [ITILv3CSI] ITIL ® Continual Service Improvement 2011 Edition , Cabinet Offi ce, TSO , 2011 ,
ISBN- 13: 978 - 0 - 11 - 331308 - 2 .

 [ITILv3SD] ITIL ® Service Design 2011 Edition , Cabinet Offi ce, TSO , 2011 , ISBN - 13:
 978 - 0 - 11 - 331305 - 1 .

 [ITILv3SO] ITIL ® Service Operation 2011 Edition , Cabinet Offi ce, TSO , 2011 , ISBN - 13:
 978 - 0 - 11 - 331307 - 5 .

 [ITILv3SS] ITIL ® Service Strategy 2011 Edition , Cabinet Offi ce, TSO , 2011 , ISBN - 13:
 978 - 0 - 11 - 331304 - 4 .

 [ITILv3ST] ITIL ® Service Transition 2011 Edition , Cabinet Offi ce, TSO , 2011 , ISBN - 13:
 978 - 0 - 11 - 331306 - 8 .

 [ITU - T G.114] Series G: Transmission Systems and Media, May 2003 . Digital Systems and
Networks.

 [Kundra] Vivek Kundra, U.S. Federal Chief Information Offi cer , et al., State of Public Sector
Cloud Computing, May 20, 2011 , http://www.cio.gov/pages.cfm/page/State - of - Public - Sector -
Cloud - Computing.

 [Linden] Greg Linden , Make Data Useful, http://www.scribd.com/doc/4970486/Make - Data -
Useful- by - Greg - Linden - Amazoncom.

 [Microsoft] Reliability Overview, October 10, 2008 , http://technet.microsoft.com/en - us/library/
cc506068.aspx.

 [MOF] Microsoft Operations Framework, http://technet.microsoft.com/en - us/solutionaccelera-
tors/dd320379.aspx.

 [Netfl ix10] 5 Lessons We ’ ve Learned Using AWS, Netfl ix Tech Blog, December 16, 2010,
 http://techblog.netfl ix.com/2010/12/5 - lessons - weve - learned - using - aws.html.

316 REFERENCES

 [Netfl ix11] The Netfl ix Simian Army, http://techblog.netfl ix.com/2011/07/netfl ix - simian - army.
html , July 11, 2011 .

 [NIST - 800 - 145] The NIST Defi nition of Cloud Computing (Draft) , Special Publication 800 -
 145 (Draft), January 2011 .

 [NIST - B] Peter Mell and Tim Grance , Effectively and Securely Using the Cloud Computing
Paradigm, NIST , Information Technology Laboratory , October 7, 2009, http://csrc.nist.gov/
groups/SNS/cloud- computing/cloud - computing - v26.ppt.

 [NIST - C] Cloud Computing Taxonomy; Preliminary Draft, NIST CCRATWG 003 v2,
 http://collaborate.nist.gov/twiki - cloud - computing/pub/CloudComputing/Meeting1T
CloudTaxonomy111211/NIST_CCRATWG_007_CloudTaxonomy_011011.pdf.

 [NIST - D] 800 - 144 — Guidelines for Security in Public Cloud, http://csrc.nist.gov/publications/
drafts/800- 144/Draft - SP - 800 - 144_cloud - computing.pdf.

 [NORS] Network Outage Reporting System User Manual, Version 6, April 9, 2009 , U.S.
Federal Communications Commission , http://transition.fcc.gov/pshs/outage/nors_manual.
pdf.

 [ODCA] http://www.opendatacenteralliance.org/.

 [ODCA - SUoM] Open Data Center Alliance Usage: Standard Units of Measure for IaaS, 2011 ,
 http://www.opendatacenteralliance.org/document - sections/category/71 - docs?download=
458%3Astandard_units_of_measure.

 [Oppenheimer] David Oppenheimer , Archana Ganapathi , and David A. Patterson , Why Do
Internet Services Fail, and What Can Be Done About It? 4th Usenix Symposium on Internet
Technologies and Systems (USITS ’ 03), 2003 , http://roc.cs.berkeley.edu/papersusits03.pdf.

 [OVF] Open Virtualization Format Specifi cation , Distributed Management Task Force ,
DSP0243, version 1.1.0, January 12, 2010 .

 [P.800] Methods for Subjective Determination of Transmission Quality , International Telecom-
munications Union ITU - T Recommendation P.800, 8/96.

 [Rauscher06] Karl F. Rauscher , Richard E. Krock , and James P. Runyon , Eight Ingredients of
Communications Infrastructure: A Systematic and Comprehensive Framework for Enhancing
Network Reliability and Security , Bell Labs Technical Journal , 2006 , 10.1002, John Wiley &
Sons, Ltd.

 [RFC3060] Policy Core Information Model , Version 1, February 2001 .

 [RFC3198] Terminology for Policy - Based Management , November 2001 .

 [RFC3261] SIP: Session Initiation Protocol , Internet Engineering Task Force Request for
Comment 3261, June 2002 .

 [ROC] Recovery - Oriented Computing, http://roc.cs.berkeley.edu/.

 [SHARE] http://www.share.org/.

 [Slashdot] http://en.wikipedia.org/wiki/Slashdot_effect.

 [TIA942] Telecommunications Infrastructure Standard for Data Centers , ANSI/TIA - 942 - 2005,
Approved: April 12, 2005 .

 [TIPS0340] Seven Tiers of Disaster Recovery, http://www.redbooks.ibm.com/abstracts/
tips0340.html.

 [TL9000] TL 9000 Quality Management System Measurements Handbook 4.5, Quality
Excellence for Suppliers of Telecommunications Forum (QuEST Forum), 2010 , http://tl9000.
org.

REFERENCES 317

 [Uptime] http://www.uptimeinstitute.org/.

 [UptimeTiers] Data Center Site Infrastructure Tier Standard: Topology , prepared by Uptime
Institute Professional Services, LLC , 2010 .

 [Varia] Jinesh Varia , Architecting for the Cloud: Best Practices, January 2011 , http://jinesh-
varia.s3.amazonaws.com/public/cloudbestpractices- jvaria.pdf.

 [Vishwanath] Kashi Venkatesh Vishwanath and Nachiappan Nagappan , Characterizing Cloud
Computing Hardware Reliability, Microsoft Research, http://research.microsoft.com/pubs/
120439/socc088- vishwanath.pdf.

 [Webster] Isochronal, http://www.merriam - webster.com/dictionary/isochronal.

 [Wikipedia] Disaster Recovery, http://en.wikipedia.org/wiki/Disaster_recovery .

 [X805] X.805: Security Architecture for Systems Providing End - to - End Communications ,
International Telecommunications Union, ITU Recommendation X.805, October 2003 .

318

ABOUT THE AUTHORS

 ERIC BAUER is reliability engineering manager in the Software, Solutions, and
Services Group of Alcatel - Lucent. He currently focuses on reliability and availability
of Alcatel - Lucent ’ s cloud - related offerings, IP Multimedia Subsystem (IMS), and other
solutions. Before focusing on reliability engineering topics, Mr. Bauer spent two
decades designing and developing embedded fi rmware, networked operating systems,
IP telephony Internet platforms, and optical transmission systems. He has been awarded
more than a dozen U.S. patents, authored Design for Reliability: Information and
Computer - Based Systems , coauthored Beyond Redundancy: How Geographic Redun-
dancy Can Improve Service Availability and Reliability of Computer - Based Systems
and Practical System Reliability , and published several papers in the Bell Labs Techni-
cal Journal . Mr. Bauer holds a BS in Electrical Engineering from Cornell University
and an MS in Electrical Engineering from Purdue University. He lives in Freehold,
New Jersey.

 RANDEE ADAMS is a consulting member of the technical staff in the Software, Solu-
tions, and Services Group of Alcatel - Lucent. She originally joined Bell Labs in 1979
as a programmer on the new digital 5ESS switch. Ms. Adams has worked on many
projects throughout the company (e.g., software development, trouble ticket manage-
ment, load administration research, software delivery, systems engineering, software
architecture, software design, tools development, and joint venture setup) across many
functional areas (e.g., database management, recent change/verify, common channel
signaling, operations, administration, and management, reliability, and security). Cur-
rently, she is focusing on reliability for ALU products. She has given talks
at various internal forums on reliability. Ms. Adams coauthored Beyond Redundancy:
How Geographic Redundancy Can Improve Service Availability and Reliability of
Computer - Based Systems . Ms. Adams holds a BA from the University of Arizona and
an MS in Computer Science from the Illiniois Institute of Technology. She lives in
Naperville, Illinois.

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

319

Reliability and Availability of Cloud Computing, First Edition. Eric Bauer and Randee Adams.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

ACID, 211, 234
Active-standby, 52–53, 56, 94, 104, 112, 210,

213, 226–227, 282
Ad hoc site, 176
Advanced security, 7, 9, 71
Affi nity, 107, 210, 246, 257
Attributability of cloud impairments, 201,

202, 204–206, 225, 264, 266, 269, 273,
294, 298, 305

Availability, See also Service Availability
expectations, 65–66, 89, 116
hardware, 130
inherent vs. operational, 74
modeling, 110–115
ratings, 8–9, 40–41

BASE, 211–212, 234
Benefi ts of cloud computing, 4, 14–15, 65
Brittle application architecture, 154–155
Broad network access, 4–5, 66–67, 296

Capacity model, 139, 141
Cassandra, 212
Chaos monkey, 221, 236
Client initiated recovery, 180, 182, 206, 234,

281, 282–284, 289
Cloning, 26
Cloud bursting, 6, 12, 87, 138, 146, 162, 165,

169, 170, 172, 253
Cloud consumer attributable, 202–203, 305

INDEX

Cloud consumer roles, 12–14, 72–73, 81–83,
86, 157, 162, 166

Cloud deployment models, 4, 11–12, 80
Cloud deployment usage scenario, 187,

193–195, 248
Cloud management, 164, 167, 168, 172, 215,

258, 259
Cloud service models, 62, 81, 82, 145, 202,

300
Cluster, 28, 51, 220
Cold standby, 53, 102, 113, 122, 178
Community cloud, 12
Container, 20, 22
Continual service improvement, 74, 78–79,

309–310
Control plane, 58, 158, 159
Coresidency, 95, 97–98, 109, 209, 215
Critical failure rate, 101, 112, 284
Customer attributa ble downtime, 189
Customer attributable outage, 41, 172

Data center, 4–5, 7–9, 120–121, 188,
197

expectations, 87–89
Data plane, 58, 158
Defective service transaction, 45–46
Defects per million (DPM), 44, 69, 170, 249,

250, 274, 276
Deming cycle, 268
Denial of service attack, 136, 159–162

320 INDEX

Deployment models, 4, 11–12, 65, 80,
132, 162

Design for reliability (DfR), 32, 81, 82, 197,
209, 302, 309, 301

of cloud solutions, 271–295
of virtualized applications, 244–270

DfR. See Design for Reliability
Diagnostic failure, 54
Disaster drills, 179–180, 236, 285, 288
Disaster recovery, 7, 9, 26, 34, 52, 56–58, 70,

81, 87, 154, 165, 166, 174–182, 200,
207, 209, 211, 213, 216–217, 233, 236,
240, 241, 275, 287, 301, 302, 308

requirements, 277
Distributed Denial of Service attack, 136
DPM. See Defects per million

8i + 2d, 31–34, 72–74, 80–82, 289, 299
Emulation, 19–20, 22, 24
Endurance testing, 249
End user, 5–7, 9, 12–14, 31, 33, 37, 46, 54,

56–57, 66, 70, 80, 115, 142, 144, 151,
168, 185, 197, 198, 200, 275–276

attributability, 72, 81, 201, 300
plane, 58, 158, 159

Environment ingredient, 32
External attributable outages, 42, 72–73

Fail fast, 114–115
Failure coverage, 112–115, 229, 260
Failure detection latency, 112–115
Failure mode effects analysis (FMEA), 90,

92, 93, 213, 258, 279
Fast failure, 114
Five 9’s, 40, 66, 70, 72, 116, 188–191,

194–196, 225, 277, 302–304
FMEA. See Failure mode effects analysis
FRU error category, 264
Full clone, 26
Full virtualization, 19–21, 24, 95–97

Geographic distribution, 7, 9, 70, 77, 82,
87, 138, 174–175, 178–179, 254,
289, 296, 308

Geographic redundancy. See Georedundancy
Georedundancy, 154, 174–182, 205, 212,

238, 240, 249, 254, 255, 279–282, 285,
301, 308

testing, 286–287

Hardware error category, 264
Hardware fault insertion, 264
Hardware independence usage scenario,

186, 193, 246–247
Hardware ingredient, 31–34, 81, 302
Hardware-assisted virtualization, 20–21
High Availability Mechanisms, 28, 50–51,

56, 86, 123, 124, 126, 140, 150
Homogeneity, 7, 9, 71, 120
Hot recovery site, 176
Hot standby, 53, 102, 113, 122
Human ingredient, 31,-34, 299, 302
Hybrid cloud, 12, 87
Hypervisor, 13–14, 18–22, 85, 89, 93,

95–101, 107, 110, 112, 113, 116, 118,
121–127, 129–131, 139, 151–152, 177,
181, 186, 189, 210, 212, 215, 218–220,
229–231, 234, 246–248, 252, 255–258,
261–262, 264, 267, 297

IaaS. See Infrastructure as a service
Information Technology Infrastructure

Library (ITIL), 35, 74, 302, 309
Infrastructure as a service (IaaS), 10, 68, 140,

178, 189, 253, 274
provider defi nition, 13
provider attributability, 69, 83–86, 145,

155–157, 189, 191, 202, 274
Inherent availability, 74
Isochronal data, 60
IT service management, 43, 67, 71, 74–83,

194–196, 236, 260, 302–307, 309
ITIL. See Information Technology

Infrastructure Library

Jitter, 60–62, 67, 86, 118, 151, 216, 224, 263,
266, 286

Linked clone, 26
Lip sync, 59
Load share, 52, 257

Manually controlled georedundant
recovery,180, 282

Maximum acceptable service disruption, 54,
149, 233, 254, 258, 271, 287, 298

Mean opinion score, 59
Measured service, 4, 6, 66, 69, 137, 146, 165,

182, 296

INDEX 321

MP 1, 205–206, 276–277, 280, 286,
288–289, 303, 305

MP 2, 205–206, 242, 250–251, 275–277,
279–280, 282, 284, 286, 288–289, 303,
305

MP 3, 205–207, 242, 274–277, 279–282,
286, 288–289, 305

MP 4, 207, 288–289, 305
MTTR, 36–37, 102–103, 129–131, 230, 307
Multitenancy, 122, 147, 150, 171, 186, 209,

215, 248, 259, 267, 269, 297
Multitenant usage scenario, 186, 248
Mutual aid agreements, 176

Native deployment, 66, 87, 100–101, 103,
112–115, 119, 130, 151, 186, 223, 229,
244, 246, 263, 290, 307

Network element impact outages, 37–38
Network ingredient, 33
NoSQL, 211–212
N + K, 52, 93–94, 103, 210, 257, 282

ODCA data center expectations, 87–89,
142–143, 171, 178–179, 293

On demand self service, 4, 66, 141, 144, 146,
165, 179, 218–219, 248, 291, 296

Operating system (OS) virtualization, 20, 22,
24, 95–97

Operational availability, 74
Orchestration testing, 285, 287
OS virtualization. See Operating system

virtualization
Outage attributability, 41–42, 72, 82, 189,

201, 300
Outgrowth, 138, 142, 156, 214, 234,

238–239, 253

PaaS. See Platform as a service
Packet loss, 61, 224, 286
Paravirtualization, 20, 21–22, 24, 95, 96–97,

101
Partial outage, 38–40
Payload ingredient, 31, 33, 81, 302
Planned downtime, 35–36, 181, 189
Platform as a service (PaaS), 10, 11, 13, 85,

202, 203, 293, 300, 307
Policy ingredient, 73, 81, 302
Policy(-based) management, 166–171
Power ingredient, 31–34, 73, 81, 299, 302

Private cloud, 11, 169, 178
Procedural error, 41–42, 172–173, 221–222,

266
Procedures, 7, 31, 33, 42, 71, 83, 170, 213,

217, 220–223, 236, 240, 260, 266, 277,
288, 291, 303, 307–308

Product attributed outages, 41
Public cloud, 12, 87, 169, 178

Rapid elasticity, 5–6, 14, 67–69, 77, 132,
137, 169, 214–217, 223, 233, 234, 235,
237, 248, 253, 258–259, 277, 289, 290,
291, 296, 306

RBD. See Reliability Block Diagram
Reciprocal backup agreement, 176, 178
Recovery point objective, 56–58, 82,

175–176, 179,180, 211, 217, 233, 236,
240, 255, 277, 279, 285, 287, 303, 308

Recovery time objective, 56–58, 82,
175–176,179, 180, 211, 217, 233, 236,
240, 255, 277, 285, 287, 303, 308

Redundancy, 8, 34, 37–38, 80, 90, 92–94, 99,
102–107, 112, 113, 114, 115, 122, 124,
129, 132, 150, 154, 193, 198, 200, 206,
210, 230, 233, 236, 243, 257, 261, 262,
264, 279, 282, 306, 307, 309. See also
Georedundancy

errors, 86
and high availability, 50–56
software, 212–213

Reliability, 43–44, 170–171, 232
analysis techniques, 90–94
analysis of virtualization, 95–99
hardware, 116–121, 270
roadmap, 269, 291

Reliability block diagram (RBD), 90–92,
191–193

Reliability plan, 292, 293–295
Reliability prime, 295
Resilient computing, 7, 9
Resource pooling, 4, 5, 67, 133, 138, 165,

224, 296
Retainability, 59, 108–110, 168, 232, 235,

288, 294
Retention, 59
Robustness testing, 83, 215, 216, 220, 221,

245, 247, 260–267, 285–286
RPO. See Recovery point objective
RTO. See Recovery Time Objective

322 INDEX

SaaS. See Software as a service
Safety critical availability rating, 41, 88
Scheduled downtime, 74
Scheduled outage, 41, 43
Security, 7–9, 12, 33, 34, 41, 43, 87, 88,

157–162, 166, 169, 171–172, 187, 198,
199, 203, 205–206, 210, 211, 218, 224,
248, 252, 261, 262, 273, 299

Semantic attacks, 160
Server consolidation usage scenario, 186,

189, 190, 195, 252
Server driven recovery, 180, 282
Server virtualization, 19–22, 24
Service availability, 7, 28, 29, 65–66, 70, 74,

80, 89, 116, 122, 129, 135, 137, 181,
188, 205–207, 225, 241–242, 249, 284,
298, 306, 308–309

Metrics, 31, 35–43, 108, 153, 168
Service design, 74, 76, 82, 309
Service impact outage, 37–38,137
Service level agreements, 15, 33, 143,

167, 292
Service models, 9–10, 62
Service operation, 74, 76–78, 276,

286, 309
Service orchestration, 71, 75, 79–80,

164–173,187, 194, 209, 214–215, 222,
223, 234, 253, 260, 280, 287, 307

Service provider attributable outage,
41–42

Service providers, 5, 7, 9, 12–15, 31, 37,
43, 67, 72, 73, 85, 86, 120, 138, 140,
146, 157, 160, 161, 168, 178, 179,
185, 191, 198, 201–204, 231, 253,
289, 292, 293

Service reliability, 7, 15, 29–31, 41, 49,
58, 65–68, 70, 71, 75–77, 79, 80,
109, 135, 136, 147, 149, 150,162,
165, 168, 197, 198, 204, 224–225,
235, 274, 288

metrics, 31, 44–46, 49, 59, 67, 136, 152,
153, 254, 298

Service strategy, 74–76, 309
Service transition, 8, 9, 26, 43, 67, 74,

77, 209, 218–222, 248–249,
254–255, 258, 259, 263, 279,
280, 307–309

Silent failure, 52, 55
Simian army, 221, 236

Simplex, 32, 38, 43, 50, 55, 91, 94, 98, 110,
111, 129–131, 198, 228, 230

Single point of failure (SPOF), 92, 246,
256–258

Single point of maintenance, 92
Slashdot effect, 134–135, 156
Slashdot testing, 287
Slew rate, 141–142, 156, 162, 236, 287
Snapshot, 26, 105, 130, 177, 264–266, 307
Software as a service (SaaS), 10–11, 13, 14,

83, 202, 203, 265, 293, 300
Software ingredient, 31, 32, 73, 299, 302
Solution, 175–176, 181–182, 197, 205, 217,

225, 292–295, 303, 305–306, 308
Solution design for reliability, 271–291, 310
Spare online capacity, 68, 140, 141, 144, 145,

147, 150, 155, 230, 231, 236, 290, 308
SPOF. See Single point of failure
Stability testing, 245, 267–269, 285, 287, 294
Streaming services, 58–61
Switchover latency, 113–115
Switchover success probability, 114, 115
Syntax attacks, 160

Tier III “concurrently maintainable” data
centers, 8–9

Tier II “redundant component” data center, 8
Tier I “basic” data center, 8
Tier IV “fault tolerant” data center, 8, 9, 280
Traditional deployment, 15, 66, 93, 100, 102,

107, 124, 132, 150, 162, 196, 219, 229,
230, 244, 248, 267, 294, 304, 306

Traffi c plane, 159
Type 1 hypervisor, 18–19
Type 2 hypervisor, 19

Uptime Institute, 8, 280

Virtual appliance, 18, 66, 70, 186, 267, 297
Virtual environment, 20, 22, 95, 96, 98, 179
Virtual IP address, 127, 129
Virtual Local Area Network, 127, 128
Virtual machine (VM), 13, 18, 16, 22, 27, 67,

85, 86, 93, 99, 103–107, 121, 138, 193,
209, 220, 244, 257, 297, 307

lifecycle, 16, 23–26, 27, 103
monitor (VMM), 18, 19

Virtual network interface card, 124, 127, 266
Virtual private network, 127, 129, 165

INDEX 323

Virtualization, 7, 9, 16–22, 67, 70, 77, 133,
150–152, 177, 182, 185–187, 210, 212,
216–219, 222–223, 226, 229–231, 246,
251, 258, 297

Hardware, 116, 119–131, 246, 249, 263
reliability analysis, 28, 67, 70, 71, 86–87,

90–115, 256
and software, 100, 101

Virtualization aware processors,
20

VMM. See Virtual machine, monitor

WAN attributability, 202
Warm recovery site, 176
Warm standby, 53, 86, 102,

113, 122

